NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2008-2009

MA4262 Measure and Integration

Nov/Dec 2008 — Time allowed : $2\frac{1}{2}$ hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains SIX (6) questions and comprises FOUR (4) printed pages.
- 2. Answer **ALL** questions in this paper. Marks for each question are indicated at the beginning of the question.

PAGE 2 MA4262

Notation. Throughout this paper the symbols \mathbb{R} , m^* and m denote the real line, the Lebesgue outer measure and the Lebesgue measure, respectively.

Answer all the questions. Marks for each question are indicated at the beginning of the question.

Question 1 [15 marks]

(a) Let Ω be the collection of all subsets A of \mathbb{R} with

$$m^*(A) = \sup \{ m(F) \, : \, F \subseteq A \text{ and } F \text{ is a bounded and closed subset of } \mathbb{R} \}.$$

Prove or disprove that every set in Ω is Lebesgue measurable.

(b) Let (f_j) be a sequence of real-valued functions on \mathbb{R} and let $E_{jk} := \{x \in \mathbb{R} : f_j(x) \ge 1/k\}$. Prove that

$$\{x \in \mathbb{R} : \limsup_{j \to \infty} f_j(x) > 0\} = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{j=N}^{\infty} E_{jk}.$$

(c) Let f be a real-valued Lebesgue measurable function on \mathbb{R} . If A is a G_{δ} set in \mathbb{R} , prove or disprove that the set $\{x \in \mathbb{R} : f(x) \in A\}$ is Lebesgue measurable.

Question 2 [15 marks]

- (a) Let E be a subset of \mathbb{R} . Prove that E is Lebesgue measurable if and only if for every $\epsilon > 0$, there exist open sets G_1 and G_2 of \mathbb{R} such that $E \subseteq G_1$, $\mathbb{R} \setminus E \subseteq G_2$ and $m(G_1 \cap G_2) < \epsilon$.
- (b) Let f(x,y) be a real-valued function on \mathbb{R}^2 such that for each fixed y in \mathbb{R} , the function f(x,y) is measurable (as a function of x) in \mathbb{R} ; and for each fixed x in \mathbb{R} , the function f(x,y) is continuous (as a function of y) in \mathbb{R} . Define the function F on \mathbb{R} by

$$F(x) := \max_{0 \le y \le 1} f(x, y).$$

Prove that F is Lebesgue measurable on \mathbb{R} .

PAGE 3 MA4262

Question 3 [15 marks]

- (a) Let f be a real-valued Lebesgue measurable function on \mathbb{R} and let ϕ be an increasing function on \mathbb{R} . Prove or disprove that the composite function $\phi \circ f$ is Lebesgue measurable on \mathbb{R} .
- (b) Let f be a real-valued Lebesgue measurable function on a Lebesgue measurable set E. If $m(E) < \infty$, prove that for any $\epsilon > 0$, there exists a bounded Lebesgue measurable function g on E such that

$$m(\{x \in E : |f(x) - g(x)| > 0\}) < \epsilon.$$

(c) Let $f: \mathbb{R} \to [0, \infty]$ be a Lebesgue measurable function. Prove that there exists an increasing sequence (s_n) of simple (Lebesgue measurable) functions such that $\lim_{n\to\infty} s_n = f$ and for each n, the set $\{x \in \mathbb{R} : s_n(x) > 0\}$ is of finite Lebesgue measure.

Question 4 [15 marks]

(a) Let f be a real-valued function on [a, b] and let $E = \{x \in [a, b] : f'(x) \text{ exists}\}$ where f'(x) is the derivative of f at x. If $|f'(x)| \le 1$ for all $x \in E$, prove that

$$m^*(f(E)) \le m^*(E).$$

- (b) Let f be a Lebesgue integrable function on \mathbb{R} and let $E_n = \{x \in \mathbb{R} : |f(x)| \geq n\}$ for $n = 1, 2, 3, \cdots$. Evaluate $\lim_{n \to \infty} n \, m(E_n)$.
- (c) Let f be a Lebesgue integrable function on \mathbb{R} . If

$$\int_{R} f(x) \, \phi(x) \, dx = 0$$

for all bounded Lebesgue measurable functions ϕ on \mathbb{R} , prove that f=0 almost everywhere on \mathbb{R} .

PAGE 4 MA4262

Question 5 [20 marks]

(a) Let $f \in L_p(\mathbb{R})$ and $g \in L_q(\mathbb{R})$ where $1 < p, q < \infty$ and 1/p + 1/q = 1. Let F be the function defined on \mathbb{R} by

$$F(t) = \int_{\mathbb{R}} f(x+t)g(x) dx.$$

Prove that F is continuous on \mathbb{R} .

(b) Evaluate

$$\lim_{n \to \infty} \int_0^{2\pi} |\sin x - \cos x|^{1/n} dx.$$

(c) Let $f \in L_{p_1}(\mathbb{R})$ and $g \in L_{p_2}(\mathbb{R})$ where $1 < p_1, p_2 < \infty$. Prove that there exists a positive real number p such that the pointwise product fg is in $L_p(\mathbb{R})$.

Question 6 [20 marks]

- (a) Let n_1, n_2, n_3, \cdots be an increasing sequence of positive integers. Let $E = \{x \in [0, 2\pi] : \lim_{k \to \infty} \sin n_k x \text{ exists}\}$. Prove that E is Lebesgue measurable and evaluate m(E).
- (b) Prove that a real-valued function f is of bounded variation on [a, b] if and only if there exists an increasing function ϕ on [a, b] such that

$$f(y) - f(x) \le \phi(y) - \phi(x)$$

for all $a \le x < y \le b$.

(c) Let f be a function of bounded variation on [0,1]. Define the function F on [0,1] by

$$F(x) = \begin{cases} \frac{1}{x} \int_0^x f(t) dt & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Prove or disprove that F is of bounded variation on [0,1].