NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2008-2009

MA2101 Linear Algebra II

November/December 2008 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- This examination paper contains ELEVEN (11) questions and comprises FIVE
 printed pages.
- 2. Answer **ALL** questions. Marks for each question are indicated at the beginning of the question.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA2101

Answer all questions.

Question 1 [8 marks] For each of the following, determine if it is true or false. There is no need to justify your answer.

- (a) For any matrix A, if A is diagonalizable, then all its eigenvalues are distinct.
- (b) Suppose V is infinite dimensional and S is any infinite linearly independent set. Then S is a basis of V.
- (c) For any subspaces U, W, W' in a vector space V, if $U \oplus W = U \oplus W'$, then W = W'.
- (d) For any orthogonal matrix A, A^2 is also orthogonal.

Question 2 [8 marks] In \mathbb{R}^2 , we define

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b) \times (c,d) = (ac,bd)$

for all $(a, b), (c, d) \in \mathbb{R}^2$.

- (i) Find the multiplicative identity and additive identity in \mathbb{R}^2 .
- (ii) Prove that $(\mathbb{R}^2, +, \times)$ is not a field. Note that A1-A4 are satisfied.

Question 3 [8 marks] Let $A \in \mathcal{M}_{nn}(\mathbb{R})$ and $W = \{B \in \mathcal{M}_{nn}(\mathbb{R}) \mid AB = BA\}$. Suppose $m_A(x)$ is the minimal polynomial of A and

$$m_{\mathbf{A}}(x) = x^r + a_{r-1}x^{r-1} + \dots + a_0.$$

- (i) Prove that W is a subspace of $\mathcal{M}_{nn}(\mathbb{R})$.
- (ii) Prove that I, A, A^2 , ..., A^{r-1} are linearly independent vectors contained in W.

PAGE 3 MA2101

Question 4 [6 marks] Let V be a finite dimensional space and $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis of V. For any positive integer r with r < n, find a subspace of dimension r. Note that you need to justify why the subspace constructed is of dimension r.

Question 5 [10 marks] Let $T: \mathbb{R}^n \to P_m(\mathbb{R})$ be linear transformation. Here $P_m(\mathbb{R})$ denotes the set of real polynomials with degree less than or equal to m.

- (i) Find the dimensions of \mathbb{R}^n and $P_m(\mathbb{R})$ over \mathbb{R} . [No need to justify your answers.]
- (ii) Prove that if m + 1 < n, then $Ker(T) \neq \{0\}$.
- (iii) Let B_1 and B_2 be bases in \mathbb{R}^n and $P_m(x)$ respectively. Prove that if m+1=n and the null space of $[T]_{B_2,B_1}=\{0\}$, then T is bijective.

Question 6 [8 marks] Let \mathcal{B}_1 and \mathcal{B}_2 be the ordered bases for $P_2(\mathbb{R})$ and $P_3(\mathbb{R})$ given by

$$\mathcal{B}_1 = \{1, x, x^2\}$$
 and $\mathcal{B}_2 = \{1, x, x^2, x^3\}$

respectively. Note that $P_2(\mathbb{R})$ and $P_3(\mathbb{R})$ are the set of polynomials with degree less than or equal to 2 and 3 respectively.

(i) Let $T_1: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ be given by

$$T_1(a+bx+cx^2) = (b-a) + (a-b+c)x + cx^2 + (b+2c)x^3.$$

Find the matrix $[T_1]_{\mathcal{B}_2,\mathcal{B}_1}$.

(ii) Let $T_2: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation such that

$$[T_2]_{\mathcal{B}_1,\mathcal{B}_2} = \left(\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Find the matrix $[T_2 \circ T_1]_{\mathcal{B}_1}$.

PAGE 4 MA2101

Question 7 [12 marks] Let V be a vector space and $T: V \to V$ be a linear transformation.

- (i) For any positive integers i, j, prove that $KerT^i \subset KerT^j$ if i < j.
- (ii) Prove that if $\{u_1, u_2, u_3\}$ is a basis of V with

$$T(u_1) = u_2, T(u_2) = u_3$$
 and $T(u_3) = 0$,

then $T^3 = 0$ and $KerT \neq KerT^2 \neq KerT^3 = V$.

(iii) Find a basis for KerT, $KerT^2$ and $KerT^3$.

Question 8 [10 marks]

Let A be the real matrix $\begin{pmatrix} 1 & 1 & a \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.

- (i) Find the characteristic polynomial of A.
- (ii) Find all the values of a for which A is diagonalizable.
- (iii) For those values of a for which A is not diagonalizable, find all possible Jordan forms.

Question 9 [10 marks] Let
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 2 & 2 & -1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
.

- (i) Compute the characteristic polynomial of \boldsymbol{A} and find all its roots. Hence, find all possible minimal polynomial for \boldsymbol{A} .
- (ii) Find the minimal polynomial of A and hence find a Jordan canonical form of A.

PAGE 5 MA2101

Question 10 [10 marks] In \mathbb{R}^4 , we define $\langle (u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \rangle = u_1 v_1 + 2u_2 v_2 + 3u_3 v_3 + u_4 v_4$ for any $(u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$.

- (i) Prove that $\langle .,. \rangle$ defines an inner product on \mathbb{R}^4 .
- (ii) Let $W = span\{(1, -2, 1, -1), (2, -3, 2, -3), (3, -5, 3, -4), (-1, 1, -1, 2)\}$. Find W^{\perp} with respect to the inner product defined by $\langle (u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \rangle = u_1 v_1 + 2u_2 v_2 + 3u_3 v_3 + u_4 v_4$ for any $(u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$.

Question 11 [10 marks] Let A be a symmetric matrix in $M_4(\mathbb{R})$ with eigenvalues λ_1, λ_2 . Let E_1 and E_2 be the eigenspaces corresponding to λ_1 and λ_2 respectively.

Suppose
$$\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-2\\1 \end{pmatrix} \right\}$$
 is a basis for E_1 and $\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix} \right\}$ is a basis for E_2 .

- (i) Find an orthonormal basis (with respect to the Euclidean inner product) of \mathbb{R}^4 consisting of only eigenvectors of A.
- (ii) Find an orthogonal matrix that diagonalizes A.

[END OF PAPER]