NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 1 EXAMINATION 2008-2009

MA1101R Linear Algebra I

November 2008 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains a total of FOUR (4) questions and comprises THREE (3) printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the beginning of the question.
- 3. Calculators are not allowed to be used. Students should show their working and solutions with all the necessary intermediate steps.

PAGE 2 MA1101R

Question 1 [25 marks] For this question, let

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$$

- (a) Let \mathbf{A} be a 3×3 matrix. If $\mathbf{A} = [\mathbf{u_1} \ \mathbf{u_2} \ \mathbf{u_3}]$ (that is, $\mathbf{u_i}$ is the i-th column of \mathbf{A}), compute $\det(\mathbf{A})$.
- (b) Explain why $S = \{ \boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3} \}$ is a basis for \mathbb{R}^3 . If $\boldsymbol{w} = (x, y, z)^T$, find $(\boldsymbol{w})_S$.
- (c) Write v_1 and v_2 as linear combinations of u_1 , u_2 and u_3 .
- (d) Find all vectors orthogonal to span $\{u_3, v_2\}$.
- (e) Find all vectors \boldsymbol{y} such that $\operatorname{span}\{\boldsymbol{u_1},\boldsymbol{u_2},\boldsymbol{u_3}\}=\operatorname{span}\{\boldsymbol{v_1},\boldsymbol{v_2},\boldsymbol{y}\}.$
- (f) Find an invertible matrix B such that all eigenvectors of B are scalar multiples of u_1 .

Question 2 [25 marks] For this question, let

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & a & 1 \\ -1 & -1 & 1 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 2 & \frac{1}{2} \\ 0 & 0 & 3 \end{pmatrix}.$$

- (a) If a = -1, find two different solutions to AX = B.
- (b) If a = -1, $\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, find an \boldsymbol{x} such that $||\boldsymbol{b} \boldsymbol{A}\boldsymbol{x}||$ is minimized.
- (c) Suppose **B** is the standard matrix of a linear transformation $T_1: \mathbb{R}^3 \to \mathbb{R}^3$. Let l be the line

$$x=s,y=0,z=2s \text{ for } s\in\mathbb{R}$$

and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection onto the line l. Find the standard matrix for the linear transformation $T_1 \circ T_2$.

- (d) If a = 5,
 - (i) show that 2 is an eigenvalue of \boldsymbol{A} ;
 - (ii) find a basis for the eigenspace E_2 .
- (e) If \mathbf{A} is the standard matrix of a linear transformation $T_3 : \mathbb{R}^3 \to \mathbb{R}^3$, find all values of a such that the range of T_3 is not \mathbb{R}^3 .
- (f) Prove that $\boldsymbol{B}-\boldsymbol{C}$ is diagonalizable.

PAGE 3

MA1101R

Question 3 [25 marks] For this question, let

$$w_1 = \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad w_3 = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}, \quad w_4 = \begin{pmatrix} 8 \\ 5 \\ -6 \end{pmatrix}.$$

- (a) Explain why $S = \{ \boldsymbol{w_1}, \boldsymbol{w_2}, \boldsymbol{w_3}, \boldsymbol{w_4} \}$ is a linearly dependent set.
- (b) Show that $\{w_1, w_2, w_3\}$ is a basis for span(S).
- (c) Prove that span $(S) = \mathbb{R}^3$.
- (d) If $U = \{e_1, e_2, e_3\}$ (standard basis for \mathbb{R}^3) and $V = \{w_1, w_2, w_3\}$, find the transition matrix from U to V.
- (e) Compute the projection of w_3 onto span $\{w_1, w_2\}$.
- (f) Find a basis for $\operatorname{span}\{w_1, w_2\} \cap \operatorname{span}\{w_3, w_4\}$.

Question 4 [25 marks] For this question, all matrices are symmetric matrices of order n and all vectors are column vectors. We also need the following definition

A symmetric matrix \boldsymbol{A} of order n is said to be **positive semidefinite** if for all nonzero $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \geq 0$

- (a) Prove that if A and B are both positive semidefinite matrices, then A + B is also positive semidefinite.
- (b) Prove that $\begin{pmatrix} 4 & 1 & 0 \\ 1 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ is positive semidefinite.
- (c) If $\mathbf{A} = (a_{ij})$ is positive semidefinite, show that $a_{ii} \geq 0$ for i = 1, 2, ..., n.
- (d) If $\mathbf{A} = (a_{ij})$ is positive semidefinite, show that $a_{ij}^2 \leq a_{ii}a_{jj}$ for all $i \neq j$.

END OF PAPER