NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER I EXAMINATION 2007-2008

MA5205 Graduate Analysis I

November/December 2007— Time allowed: 2 and 1/2 hours

INSTRUCTIONS TO CANDIDATES

- (1) This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **SEVEN** (7) questions and comprises **FOUR** (4) printed pages.
- (2) Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- (3) Answer not more than **TWO** (2) questions from **Section B**. Each question in Section B carries 18 marks.
- (4) Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.
- (5) All theorems and results used in your answers should be clearly stated.

PAGE 2 MA5205

SECTION A

Answer all the questions in this section. Section A carries a total of 64 marks.

Question 1 [30 marks]

Prove or disprove each of the following statements.

- (i) If f is a nonnegative measurable function on \mathbb{R}^n , then there exists a sequence of functions $\{f_k\} \subset \hat{S} = \{\sum_{i=1}^n a_i \chi_{E_i} : n \in \mathbb{N}, 0 \le a_i < \infty, |E_i| < \infty \text{ for all } i\}$ such that $\lim_{k\to\infty} f_k(x) = f(x)$ and $f_k(x) \le f_{k+1}(x) \le f(x)$ for all $x \in \mathbb{R}^n$.
- (ii) If f is a function of bounded variation on [a, b], then it is Borel measurable on [a, b].
- (iii) If ϕ is an additive set function (signed measure) on a measurable space $\langle X, \Sigma \rangle$ and $f: X \to \mathbb{R}$ is a measurable function, then given any $\varepsilon > 0$, there exist M > 0 and $E \subset X$ such that $|f(x)| \leq M$ for $x \in E$ and $|\phi(X \setminus E)| < \varepsilon$.
- (iv) If $f \in L^p(\mathbb{R}^n)$ where $1 \leq p < \infty$, then given any $\varepsilon > 0$, there exists $\delta > 0$ such that $\int_E |f| < \varepsilon$ whenever $|E| < \delta$.
- (v) Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f_r(x) = f(x) + r$ is Borel measurable for all positive rational numbers r. Then f is also Borel measurable.
- (vi) Let $f_n, f \in L^2(\mathbb{R})$ for all n such that $f_n \to f$ almost everywhere. If $\int f_n g \to \int f g$ for all $g \in L^2(\mathbb{R})$, then $f_n \to f$ in $L^2(\mathbb{R})$.

Question 2 [15 marks]

Let $P_y(x) = P(x,y) = \frac{1}{\pi} \frac{y}{y^2 + x^2}$. Suppose $f(x_0^+) = \lim_{x \to x_0^+} f(x)$ and $f(x_0^-) = \lim_{x \to x_0^-} f(x)$ are both finite. If $f \in L^{\infty}(\mathbb{R})$,

(i) for any y > 0, show that

$$f*P_y(x_0) - \frac{f(x_0^+) + f(x_0^-)}{2} = \int_0^\infty (f(x_0 - t) - f(x_0^-)) P_y(t) dt + \int_{-\infty}^0 (f(x_0 - t) - f(x_0^+)) P_y(t) dt;$$

(ii) hence or otherwise, show that

$$\lim_{y \to 0^+} f * P_y(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$

Question 3 [7 marks]

Suppose f and w are nonnegative measurable functions on \mathbb{R}^n such that $\int f(x)^p w(x) dx < \infty$ and $\int f(x)^2 w(x) dx < \infty$, where $0 . Show that <math>\int f(x)^r w(x) dx < \infty$ for any p < r < 2.

...-3-

PAGE 3 MA5205

Question 4 [12 marks]

Let f^* be the Hardy-Littlewood maximal function of f.

- (i) Show that $|f(x)| \leq f^*(x)$ for almost all x if $f \in L^2(\mathbb{R}^n)$.
- (ii) If $f_n \to f$ in $L^2(\mathbb{R}^n)$, show that $f_n^* \to f^*$ in $L^2(\mathbb{R}^n)$.

SECTION B

Answer not more than **two** questions in this section. Each question in this section carries 18 marks.

Question 5 [18 marks]

- (a) Let E be a measurable set in \mathbb{R}^n and $1 < r < \infty$. If $\|g\|_{L^p(E)} \leq M$ for all $1 \leq p < r < \infty$, show that $\|g\|_{L^r(E)} \leq M$.
- (b) Let $D^+f(x) = \lim_{h\to 0^+} \frac{f(x+h)-f(x)}{h}$. If f is an absolutely continuous function on an interval [a,b] such that $D^+f=0$ almost everywhere on (a,b), show that f must be a constant function.

Question 6 [18 marks]

(a) Let $\langle X, \Sigma, \mu \rangle$ be a measure space. Let $\{f_n\}$ be a sequence of measurable functions that converges to a function f in μ . Suppose there exists a sequence of integrable functions $\{g_n\}$ that converges to an integrable function g almost everywhere. If $|f_n| \leq g_n$ except on a set of μ -measure 0 for all n and

$$\lim_{n\to\infty} \int g_n = \int g,$$
 show that $\lim_{n\to\infty} \int f_n = \int f$.

(b) Let f be a real-valued measurable function on a measure space $\langle X, \Sigma, \mu \rangle$ with $\mu(X) < \infty$. If there exists a constant C > 0 such that

$$\mu\{x \in X : |f(x)| > t\} \le C/t^2$$
 for all $t > 0$,

show that $f \in L^p(X, d\mu)$ for all 0 .

Question 7 [18 marks]

(a) Let f(x,y) be an integrable function in \mathbb{R} for each $y \in \mathbb{R}$. Suppose for each y > 0, $\frac{\partial}{\partial y} f(x,y)$ exists and $|\frac{\partial}{\partial y} f(x,y)| \leq \frac{y}{x^2 + y^2}$. Show that the function

$$g(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

is differentiable for all y > 0 and

$$g'(y) = \int_{-\infty}^{\infty} \frac{\partial}{\partial y} f(x, y) dx.$$

(b) Let f^* be the Hardy-Littlewood maximal function of f and let w(x) be a nonnegative function on \mathbb{R}^n . Suppose there exist constants $C_1, C_2 > 0$ such that

$$\int_{f^*>t} w(x)dx \le C_1 \frac{\int |f(x)|w(x)dx}{t} \quad \text{for all } t > 0$$

and

$$\int (f^*(x))^2 w(x) dx \le C_2 \int |f(x)|^2 w(x) dx$$

for all locally integrable functions f. Show that for each $1 , there exists a constant <math>C_3 > 0$ such that

$$\int (f^*(x))^p w(x) dx \le C_3 \int |f(x)|^p w(x) dx$$

for all locally integrable functions f.

END OF PAPER