NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER I EXAMINATION 2007-2008

MA5203 Graduate Algebra I

December 2007 — Time allowed: 2.5 hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book examination.
- 2. This examination paper contains a total of NINE (9) questions and comprises THREE (3) printed pages.
- 3. Answer ALL questions. The marks for the questions are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2

Question 1. [10 marks]

Show that a finite group of order 105 has a non-trivial normal subgroup.

Question 2. [10 marks]

Let p be a prime. Determine all groups of order p^2 .

Question 3. [10 marks]

Let R be a commutative ring with 1. Assume that R satisfies the ascending chain condition. Let I be an ideal generated by an infinite sequence of elements x_1, x_2, \ldots in R. Show that I is finitely generated.

Question 4. [10 marks]

Let A be a rational 3×3 matrix such that $A^3 = A$. Show that A can be diagonalized.

Question 5. [20 marks]

Let $\zeta_8 = e^{\frac{i\pi}{4}}$.

- (i) Show that $\Phi_8(x) = x^4 + 1$ is irreducible in $\mathbb{Q}[x]$.
- (ii) Determine the Galois group of $K = \mathbb{Q}(\zeta_8)$ over \mathbb{Q} .
- (iii) Determine all quadratic extensions of $\mathbb Q$ contained in K.

MA5203

Question 6. [10 marks]

Compute the Galois group of the splitting field of the polynomial $x^3-2\in F[x]$ where F is

- (i) ℝ.
- (ii) Q.
- (iii) \mathbb{F}_5 .
- (iv) \mathbb{F}_7 .

Question 7. [10 marks]

Find a real number α such that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} with the Galois group $\mathbb{Z}/5\mathbb{Z}$.

Question 8. [10 marks]

Compute the following tensor products of \mathbb{Z} -modules.

- (i) $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$.
- (ii) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$.

Question 9. [10 marks]

Let
$$Q(x,y,z)=x^2+y^2-2z^2.$$
 Find $(x,y,z)\in\mathbb{Q}^3$ such that
$$Q(x,y,z)=2007.$$

END OF PAPER