Ph.D. Qualifying Examination
 Complex Analysis

ANSWER ALL 6 QUESTIONS.

Convention: Throughout this paper, \mathbf{R} denotes the set of real numbers, and \mathbf{C} denotes the set of complex numbers. For $z \in \mathbf{C}, \operatorname{Re} z$ denotes the real part of $z, \operatorname{Im} z$ denotes the imaginary part of z. In addition, for a complex variable $z=x+i y, x$ denotes the real part of z, and y denotes the imaginary part of z, unless otherwise stated.

1. Determine whether the following statements are true or false. Justify your answers.
(i) If f is an analytic function on the annulus $\{z \in \mathbf{C}|1<|z|<2\}$, then f extends to a meromorphic function on the disc $\{z \in \mathbf{C}||z|<2\}$.
(ii) If g is a non-constant entire function such that $g(0)=1$, then there exists a number $r>0$ such that $g(z) \neq 1$ for all z satisfying $0<|z|<r$.
2. Find a conformal map from the domain

$$
D_{1}:=\{z \in \mathbf{C} \mid-3<\operatorname{Re} z<3\}
$$

onto the domain $D_{2}:=\{z \in \mathbf{C}| | z+i \mid<2\}$.
3. Use the Cauchy residue theorem to evaluate the improper integral

$$
\int_{0}^{\infty} \frac{x^{2} \cos 5 x}{x^{4}+16} d x
$$

Justify your steps.
4. Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be n given complex numbers. Prove that there exists a complex number β such that

$$
|\beta|=1 \quad \text { and } \quad \prod_{i=1}^{n}\left|\beta-\alpha_{i}\right| \geq 1
$$

[Suggestion: Consider the polynomial $\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)$.]
5. Consider the punctured coordinate plane $\mathbf{D}:=\left\{(x, y) \in \mathbf{R}^{2} \mid(x, y) \neq(0,0)\right\}$, and let $h: \mathbf{D} \rightarrow \mathbf{R}$ be a harmonic function such that

$$
h(x, y)>-1 \quad \text { for all }(x, y) \in \mathbf{D}
$$

Is it true that h must be a constant function on D? Justify your answer.
6. Let z_{o} be a given complex number. It is given that a function $f: \mathbf{C} \backslash\left\{z_{o}\right\} \rightarrow \mathbf{C}$ has an isolated singular point at z_{o}. Consider the function $g: \mathbf{C} \backslash\left\{z_{o}\right\} \rightarrow \mathbf{C}$ given by

$$
g(z):=\cos (f(z)), \quad z \in \mathbf{C} \backslash\left\{z_{o}\right\} .
$$

Can g have a pole at z_{o} ? Justify your answer.

