PhD Qualifying Examination

Linear Algebra

Sem 1, 2007/2008

(1) Let $f_1(x), f_2(x), \dots, f_n(x)$ be functions having derivatives of all orders and let F(x) be the function obtained by taking the determinant of

$$\begin{pmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{pmatrix}.$$

Calculate F'(x) (please express your answer as an $n \times n$ matrix). Hence or otherwise, prove that if $f_1(x), f_2(x), \dots, f_n(x)$ are polynomials of degrees n-1 or less. Then F'(x)=0.

- (ii) Let A and B be two matrices with integral entries. Suppose that A and B admit the same characteristic polynomial f(x). Suppose further that f(x) is irreducible over \mathbb{Z} . Determine whether A and B are similar to each other over \mathbb{C} . Justify your answer.
- (iii) Let V be a vector space over \mathbb{R} . A scalar product on V is a function $\langle \ | \ \rangle : V \times V \to \mathbb{R}$ such that (i) $\langle u|v \rangle = \langle v|u \rangle$ for all $u,v \in V$, (ii) $\langle u|v+w \rangle = \langle u|v \rangle + \langle u|w \rangle$ for all $u,v,w \in V$, (iii) $\langle cu|v \rangle = c \langle u|v \rangle$ for all $c \in \mathbb{R}$, $u,v \in V$. Let V be a scalar product space of finite dimensional over \mathbb{R} . Prove that V has an orthogonal basis. Determine whether V has an orthonormal basis. Justify your answer.
- (iv) Let V be the vector space of $n \times n$ matrices over \mathbb{C} and let A be an element of V. Let $f: V \to V$ be the map defined by f(X) = AX. Show that f is linear and that $\det f = (\det A)^n$.
- (v) Let $\tau \in \mathbb{C}$ and let $V_{\tau} = \{\sum_{i=0}^{n} a_i \tau^i : a_i \in \mathbb{Q}\}$. Prove or disprove the following:
 - (a) V_{τ} is a finite dimensional vector space over \mathbb{Q} if and only if $f(\tau) = 0$ for some $f(x) \in \mathbb{Q}[x] \{0\}$.
 - (b) Suppose that V_{τ} and V_{ν} are finite dimensional. Then $V_{\tau+\nu}$ and $V_{\tau\nu}$ are finite dimensional.

Justify your answer.