Ph.D. Qualifying Examination (August 2007) Complex Analysis

ANSWER ALL 6 QUESTIONS.

Convention: Throughout this paper, **R** denotes the set of real numbers, and **C** denotes the set of complex numbers. For $z \in \mathbf{C}$, Re z denotes the real part of z, Im z denotes the imaginary part of z. In addition, for a complex variable z = x + iy, x denotes the real part of z, and y denotes the imaginary part of z, unless otherwise stated.

- 1. (a) Determine all the complex numbers z such that $\cos z$ is purely imaginary.
 - (b) Let $D := \{z \in \mathbb{C} \mid |z| < 1\}$, and suppose $f : D \to \mathbb{C}$ is an analytic function such that its derivative f' is injective on D. Prove that $f''(z) \neq 0$ for all $z \in D$.
- 2. Use the Cauchy residue theorem to evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{\cos 3x + \sin 3x}{x^2 + 25} \, dx.$$

Justify your steps.

3. Consider the punctured disk $D := \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Suppose $f : D \to \mathbb{C}$ is an analytic function such that

$$|f''(z)| \le \frac{2}{|z|^2}$$
 for all $z \in D$.

Is it true that f has a removable singular point at z = 0? Justify your answer.

4. Find a conformal map from the domain

$$D_1 := \{ z = x + iy \in \mathbf{C} \mid |x + y| < 1 \}$$

onto the second quadrant $D_2 := \{z = x + iy \in \mathbf{C} \mid x < 0 \text{ and } y > 0\}.$

5. Determine all the entire functions f such that the real part of f satisfies the inequality

$$\operatorname{Re} f(z) \leq 2 \left| \ell n \left| z \right| \right| + 3 \text{ for all } z \in \mathbf{C}.$$

Here ℓn denotes the (real-valued) natural logarithmic function.

6. Consider the unit disk $D := \{z \in \mathbb{C} \mid |z| < 1\}$. Suppose $f : D \to \mathbb{C}$ is an analytic function such that

$$f(z) \in D$$
 for all $z \in D$

and f is not one-to-one on D. Prove that |f'(0)| < 1.