Ph.D. Qualifying Examination (August 2007)
 Complex Analysis

ANSWER ALL 6 QUESTIONS.
Convention: Throughout this paper, \mathbf{R} denotes the set of real numbers, and \mathbf{C} denotes the set of complex numbers. For $z \in \mathbf{C}, \operatorname{Re} z$ denotes the real part of $z, \operatorname{Im} z$ denotes the imaginary part of z. In addition, for a complex variable $z=x+i y, x$ denotes the real part of z, and y denotes the imaginary part of z, unless otherwise stated.

1. (a) Determine all the complex numbers z such that $\cos z$ is purely imaginary.
(b) Let $D:=\{z \in \mathbf{C}| | z \mid<1\}$, and suppose $f: D \rightarrow \mathbf{C}$ is an analytic function such that its derivative f^{\prime} is injective on D. Prove that $f^{\prime \prime}(z) \neq 0$ for all $z \in D$.
2. Use the Cauchy residue theorem to evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{\cos 3 x+\sin 3 x}{x^{2}+25} d x
$$

Justify your steps.
3. Consider the punctured disk $D:=\{z \in \mathbf{C}|0<|z|<1\}$. Suppose $f: D \rightarrow \mathbf{C}$ is an analytic function such that

$$
\left|f^{\prime \prime}(z)\right| \leq \frac{2}{|z|^{2}} \quad \text { for all } z \in D
$$

Is it true that f has a removable singular point at $z=0$? Justify your answer.
4. Find a conformal map from the domain

$$
D_{1}:=\{z=x+i y \in \mathbf{C}| | x+y \mid<1\}
$$

onto the second quadrant $D_{2}:=\{z=x+i y \in \mathbf{C} \mid x<0$ and $y>0\}$.
5. Determine all the entire functions f such that the real part of f satisfies the inequality

$$
\operatorname{Re} f(z) \leq 2|\ln | z| |+3 \quad \text { for all } z \in \mathbf{C}
$$

Here ℓn denotes the (real-valued) natural logarithmic function.
6. Consider the unit disk $D:=\{z \in \mathbf{C}| | z \mid<1\}$. Suppose $f: D \rightarrow \mathbf{C}$ is an analytic function such that

$$
f(z) \in D \quad \text { for all } z \in D
$$

and f is not one-to-one on D. Prove that $\left|f^{\prime}(0)\right|<1$.

