Ph.D. Qualifying Examination Analysis Sem 1, 2007/2008

1. (a) A subset K of a metric space X is said to be compact if every open conver of K contains a finite subcover.

Prove that compact subsets of metric spaces are closed.

(b) A subset E of a metric space X is said to be perfect if E is closed and if every point of E is a limit point of E.

Prove that if E is a non-empty perfect set of \mathbb{R} . Then E is uncountable.

- (c) Prove that the open interval (a, b) is uncountable.
- 2. (a) Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuous, $n = 1, 2, \dots$ Suppose that

$$f(x) = \sum_{u=0}^{\infty} f_n(x)$$
 exists for every $x \in \mathbb{R}$.

Is $f : \mathbb{R} \to \mathbb{R}$ continuous ? Justify your answer.

(b) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that

$$\lim_{t \to x} f_n(t) = A_n, \quad n = 1, 2, \dots$$

Prove that $\lim_{n \to \infty} A_n$ exists and

$$\lim_{t \to xn \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

(c) Let $\{f_n\}$ be a sequence of continuous functions on (0, 1) such that $\{f_n\}$ converges pointwise to a continuous function on (0, 1) and $f_n(x) \ge f_{n+1}(x)$ for all $x \in (0, 1)$, n = 1, 2, ...

Does $\{f_n\}$ converge uniformly to f on (0,1)? Justify your answer.

3. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$, let $\alpha > 0$. If there exists a constant k > 0 such that

$$|f(x) - f(y)| \le k|x - y|^{\alpha}$$

for all $x, y \in A$, then f is said to be a Lipschitz function of order α on A.

- (a) Suppose f is a Lipschitz function of order α on (0, 1) where $\alpha > 1$. Prove that f is differentiable on (0, 1) and find its derivative f'.
- (b) Give an example of a Lipschitz function of order $\frac{1}{2}$ but not of order 1 on [0, 1].
- (c) Is every uniformly continuous function on [0, 1] is a Lipschitz function of order 1? Justify your answer.
- 4. (a) Let $f_n : [0,1] \to \mathbb{R}$ be continuous, n = 1, 2, Suppose $\{f_n\}$ converges uniformly on [0,1]. Prove that $\{f_n\}$ is equicontinuous on [0,1].
 - (b) Let f_n: [0,1] → ℝ be continuous, n = 1, 2, Suppose {f_n} is pointwise bounded and equicontinuous on [0,1]. Prove that (i) {f_n} is uniformly bounded on [0,1];
 (ii) {f_n} contains a uniformly convergent subsequence.

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2007-2008

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed : 4 hours

INSTRUCTIONS TO CANDIDATES

Answer **ALL** questions.