NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER II EXAMINATION 2006-2007

MA5213 Advanced Partial Differential Equations

April 27, 2007 — Time allowed: 2 and 1/2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **SEVEN** (7) questions and comprises **Three** (3) printed pages.
- 2. Answer **ALL** questions in **Section A**. The marks for questions in Section A may not necessarily be the same; marks for each question are indicated at the beginning of the question.
- 3. Answer not more than **TWO** questions from **Section B**. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA5213

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [10 marks]

Show that a function u is weakly differentiable in a domain Ω if and only if it is weakly differentiable in a neighborhood of every point in Ω .

Question 2 [20 marks]

Let Ω be a bounded domain in \mathbb{R}^n with \mathbb{C}^1 boundary. Assume that $u \in H^1(\Omega)$ and there exist constants K > 0 and $0 < \alpha < 1$ such that

$$\int_{B_R} |Du| dx \le KR^{n-1+\alpha}$$

for all $B_R \subset \Omega$. Show that $u \in C^{0,\alpha}(\Omega)$ and for all ball $B_R \subset \Omega$,

$$\max_{B_R} u - \min_{B_R} u \le CKR^{\alpha},$$

for some constant $C = C(n, \alpha)$.

Question 3 [10 marks]

Let f be a measurable function on a domain in \mathbb{R}^n . The distribution function $\mu = \mu_f$ is defined by

$$\mu(t) = \mu_f(t) = |\{x \in \Omega : |f|(x) > t\}|$$

for t > 0. Show that if p > 0 and $|f|^p \in L^1(\Omega)$, then

$$\mu(t) \le t^{-p} \int_{\Omega} |f|^p dx.$$

Question 4 [20 marks]

If Ω is a convex set in R^n , show that, for any measurable subset $S \subset \Omega$ and $x \in \Omega$, $|u(x) - u_S| \leq \frac{d^n}{n|S|} V_{\frac{1}{n}}(|Du|)(x)$ for all $u \in W^{1,p}$ with $p \geq 1$ where d is the diameter of Ω , $V_{\frac{1}{n}}(|Du|)$ is the Riesz-potential of |Du| and u_S stands for the average value of u over S. Use this or otherwise to conclude that

$$||u - u_{\Omega}||_{L^{p}(\Omega)} \le n(\frac{\omega_{n}}{|\Omega|})^{1 - (1/n)} d^{n} ||Du||_{L^{p}(\Omega)},$$

where ω_n is the volume of unit ball $B_1(0)$ in \mathbb{R}^n .

PAGE 3 MA5213

SECTION B

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

Question 5 [20 marks]

Let Ω be a smooth domain in \mathbb{R}^n and $u \in W^{2,n}(\Omega)$ satisfy the equation $\Delta u \leq f$ in Ω , where $f \in L^n(\Omega)$. Suppose that u is non-negative in a ball $B_R(y) \subset \Omega$. Show that there are constants p > 0 and C > 0 such that

$$\left(\frac{1}{|B_R|}\int_{B_R} u^p dx\right)^{1/p} \le C(\inf_{B_R} u + R||f||_{L^n(\Omega)}),$$

where constants C and p depend only on n.

Question 6 [20 marks]

By using variational method, show that the boundary value problem $u'' + u^p = 0$ in the interval (0,1) with u(0) = u(1) = 0 has a positive classical solution where p > 1 is a real number.

Question 7 [20 marks]

(a) Let X be a Banach space and T be a bounded linear mapping of X into itself satisfying

$$||x|| \le K||Tx||$$

for all $x \in X$ and for some $K \in \mathbb{R}^+$. Show that the range of T is closed.

(b) Prove that a bounded sequence in a reflexive, separable Banach space contains a weakly convergent subsequence.