NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER I EXAMINATION 2006-2007

MA5205 Graduate Analysis I

November/December 2006— Time allowed : 2 and 1/2 hours

INSTRUCTIONS TO CANDIDATES

- (1) This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **SIX** (6) questions and comprises **FOUR** (4) printed pages.
- (2) Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- (3) Answer not more than **TWO** (2) questions from **Section B**. Each question in Section B carries 20 marks.
- (4) Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.
- (5) All theorems and results used in your answers should be clearly stated.

PAGE 2 MA5205

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [36 marks]

Prove or disprove each of the following statements.

(i) Let f be a Lebesgue integrable function on \mathbb{R}^n . If $\{f_n\}$ and $\{g_n\}$ are sequences of simple functions that converge to f almost everywhere, then $\lim_{n\to\infty} \int f_n = \lim_{n\to\infty} \int g_n$. Note that a function is simple if and only if it is of the form

$$\sum_{i=1}^{N} a_i \chi_{E_i} \quad \text{with } |E_i| < \infty \quad \text{for all } i.$$

- (ii) A real function is measurable if $\{x \in \mathbb{R} : f(x) = \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$.
- (iii) If f is a function of bounded variation on $[a, b] \subset \mathbb{R}$, then it is also continuous on [a, b].
- (iv) If f is a Lebesgue measurable function on \mathbb{R} , then it is continuous almost everywhere on \mathbb{R} .
- (v) If $F, K \subset \mathbb{R}^n$ such that F is closed and K is compact, then

$$\inf_{x \in F, y \in K} |x - y| > 0$$

if and only if $F \cap K = \emptyset$.

(vi) If $D^-f(x) = \lim_{h\to 0^-} \frac{f(x+h)-f(x)}{h} \ge 0$ for almost all $x\in [a,b]$ and f is an absolutely continuous function on [a,b], then f is nondecreasing.

Question 2 [18 marks]

- (a) If f is a finite valued Lebesgue measurable function on \mathbb{R}^n , show that there exists a Borel measurable function h such that f = h almost everywhere.
- (b) If there exists C > 0 such that

$$|\{x \in \mathbb{R}^n : |f(x)| > t\}| \le C \min\{t^{-1}, t^{-q}\} \text{ for all } t > 0,$$

show that $f \in L^p(\mathbb{R}^n)$ for all 1 .

Question 3 [6 marks]

If $f \in L^p(\mathbb{R}^n)$ for some p > 1, show that given any $\varepsilon > 0$, there exists a compact set $K \subset \mathbb{R}^n$ such that $\int_{\mathbb{R}^n \setminus K} |f|^p < \varepsilon$.

PAGE 3 MA5205

SECTION B

Answer not more than **two** questions in this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

Let w be a measurable function on \mathbb{R} such that w > 0 almost everywhere on \mathbb{R} .

(i) Show that $L_w^2(\mathbb{R})$ is a Hilbert space, where

$$f \in L_w^2(\mathbb{R}) \text{ if } \int f(x)^2 w(x) dx < \infty.$$

(ii) If $f \in L^1(\mathbb{R})$ such that $f^* \in L^2_w(\mathbb{R})$ (where f^* is the Hardy-Littlewood maximal function of f) and

$$K_y(x) = \frac{1}{\pi} \frac{y}{|x|^2 + y^2}, \text{ for } x \in \mathbb{R}, y > 0,$$

show that $f * K_y \to f$ in $L^2_w(\mathbb{R})$ as $y \to 0^+$.

Question 5 [20 marks]

Let w be a measurable function on \mathbb{R}^n such that w>0 almost everywhere on \mathbb{R}^n and

$$\int_{2B} w(x)dx \le \lambda \int_{B} w(x)dx < \infty$$

for any open ball $B \subset \mathbb{R}^n$ where 2B is the ball concentric with B with twice the radius of B and $\lambda > 0$ is a fixed constant. For any measurable set $E \subset \mathbb{R}^n$, we define $w(E) = \int_E w$. For any measurable function f on \mathbb{R}^n , define

$$f^{\sharp}(x) = \sup\{\frac{1}{w(B)} \int_{B} |f| w dy : B \text{ is an open ball that contains } x\}.$$

If $\int |f| w dx < \infty$, show that there exists constant C > 0 such that

$$w\{x \in \mathbb{R}^n : f^{\sharp}(x) > \alpha\} \le C/\alpha \text{ for all } \alpha > 0.$$

Question 6 [20 marks]

(a) Let $v \in L^1[a, b]$. If g is an absolutely continuous function on [a, b], such that $\int_a^b gv = 0$, show that

$$g(x)v[a,b] = \int_a^x v[a,t]g'(t)dt - \int_x^b v[t,b]g'(t)dt \text{ for all } x \in [a,b]$$

where $v[c,d] = \int_c^d v$.

...-4-

PAGE 4 MA5205

(b) Let $\{f_n\}$ be a sequence of measurable functions that converges to a function f almost everywhere. Let $\{g_n\}$ be a sequence of integrable functions that converges to an integrable function g almost everywhere. If $|f_n| \leq g_n$ almost everywhere for all n and

$$\lim_{n\to\infty}\int g_n=\int g,$$
 show that
$$\lim_{n\to\infty}\int |f_n-f|=0,\ \ {\rm and}\ \lim_{n\to\infty}\int f_n=\int f.$$

END OF PAPER