Ph.D. Qualifying Examination Complex Analysis Jan 2007

Convention: Throughout this paper, \mathbb{C} denotes the set of complex numbers. For $a \in \mathbb{C}$ and r > 0, D(a, r) denotes the open disk $\{z \in \mathbb{C} : |z - a| < r\}$.

- 1. (a) Find the number of roots of the equation $e^{-z} + z^2 9 = 0$ in the right half plane $\operatorname{Re} z > 0$. Justify your answer carefully.
 - (b) Evaluate the improper integral

$$\int_{-\pi}^{\pi} \frac{d\theta}{1+\sin^2\theta}.$$

2. (a) Find the Laurent series which represents the function

$$f(z) = \frac{1}{1-z}$$

in the region $\{z : |z| > 1\}$.

- (b) Suppose that f is analytic inside and on the simple closed curve C and that |f(z) 1| < 1 for all z on C. Prove that f has no zeroes inside C.
- 3. Let $f: D(0; 1) \longrightarrow D(0; 1)$ be analytic. Prove that if there exist two distinct points α, β in the unit disk which are fixed points (i.e. $f(\alpha) = \alpha, f(\beta) = \beta$), then f(z) = z for all z in D(0; 1). (You may use without proof the fact that $\phi_a(z) = \frac{z-a}{1-\bar{a}z}$, where |a| < 1, is an analytic automorphism of D(0, 1)).
- 4. Find an analytic isomorphism from the open half disk

$$U = \{ z \in \mathbb{C} : |z - 3| < 2, \text{ and } \operatorname{Im} z > 0 \}$$

to the unit disk D(0,1). (You may leave your result as a composition of functions).

-END OF PAPER-