Ph.D. Qualifying Examination
 Complex Analysis
 Jan 2007

Convention: Throughout this paper, \mathbb{C} denotes the set of complex numbers. For $a \in \mathbb{C}$ and $r>0, D(a, r)$ denotes the open disk $\{z \in \mathbb{C}:|z-a|<r\}$.

1. (a) Find the number of roots of the equation $e^{-z}+z^{2}-9=0$ in the right half plane $\operatorname{Re} z>0$. Justify your answer carefully.
(b) Evaluate the improper integral

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}
$$

2. (a) Find the Laurent series which represents the function

$$
f(z)=\frac{1}{1-z}
$$

in the region $\{z:|z|>1\}$.
(b) Suppose that f is analytic inside and on the simple closed curve C and that $|f(z)-1|<1$ for all z on C. Prove that f has no zeroes inside C.
3. Let $f: D(0 ; 1) \longrightarrow D(0 ; 1)$ be analytic. Prove that if there exist two distinct points α, β in the unit disk which are fixed points (i.e. $f(\alpha)=\alpha, f(\beta)=\beta$), then $f(z)=z$ for all z in $D(0 ; 1)$. (You may use without proof the fact that $\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}$, where $|a|<1$, is an analytic automorphism of $D(0,1))$.
4. Find an analytic isomorphism from the open half disk

$$
U=\{z \in \mathbb{C}:|z-3|<2, \text { and } \operatorname{Im} z>0\}
$$

to the unit disk $D(0,1)$. (You may leave your result as a composition of functions).

-END OF PAPER-

