Ph.D. Qualifying Examination: Linear Algebra Sem 1, 2006/2007

- (1) Let V be a vector space of $n \times n$ matrices over \mathbb{C} . Let A be an element of V and let $f_A: V \to V$ be the map $f_A(X) = AX$. Prove that f_A is linear and that $\det(f_A) = (\det A)^n$.
- (ii) Let V be a finite dimensional vector space over \mathbb{C} with a non-degenerate scalar product \langle , \rangle and let f be a linear map of V into \mathbb{C} . Prove that there exists a unique element $v \in V$ such that $f(w) = \langle v, w \rangle$.
- (iii) Let V be a finite dimensional vector space over \mathbb{C} and let A be a linear operator. Let f(x) be a polynomial such that f(A) = 0 and let $f(x) = (x e_1)^{m_1}(x e_2)^{m_2} \cdots (x e_t)^{m_t}$, where $e_i \neq e_j$ for all $i \neq j$. Let V_i be the kernel of $(A e_i I)^{m_i}$. Prove that V is a direct sum of the subspaces V_1 , V_2, \cdots, V_t .
- (iv) Let V be a finite dimensional vector space over \mathbb{C} and let S be a set of linear operators of V. Suppose that the only subspaces invariant under S are 0 and V (a subspace W of V is said to be invariant under S if $BW \subseteq W$ for all B is S). Let X be a linear map such that XA = AX for all A in S. Prove that either X is invertible, or X is the zero map.
- (v) Two matrices A and B with integer entries are said to be similar to each other over \mathbb{Z} if there exists a matrix P such that
 - (a) both P and P^{-1} are integer matrices,
 - (b) $A = PBP^{-1}$.

Find all integer matrices (up to similarity over \mathbb{Z}) with characteristic polynomial $x^2 + 1$. Justify your answer.

End of Paper