NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2005-2006

MA5203 Graduate Algebra I

November 2005 - Time allowed: 2.5 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **FIVE** (5) questions and comprises **FOUR** (4) printed pages.
- 2. Answer not more than FOUR (4) questions.
- 3. Maximum marks will be allocated as follows:

Your best 3 answers : 27% each 81% Next best answer : 19% 19%

100%

- 4. Results *proved* in lectures or tutorial assignments that you use should be stated clearly but need not be proved.
- 5. The symbol R always refers to a ring (with 1), assumed arbitrary, unless otherwise stated.

PAGE 2 MA5203

Question 1. (a) Show that any non-finitely-generated subgroup of a group G must be contained in a maximal non-finitely-generated subgroup of G.

- (b) Show that if M is a right R-module M then either M is Noetherian or else contains a non-finitely-generated submodule M' such that M/M' is Noetherian.
- (c) Let M be a nonzero finitely generated Artinian right R-module. Show that M has a maximal nonzero Noetherian quotient module M'' (in the sense that any factorization of the canonical projection M woheadrightarrow M'' as

$$M \twoheadrightarrow Q \twoheadrightarrow M''$$

with Q Noetherian, has the R-map Q woheadrightarrow M'' an isomorphism).

Question 2. Let S be a commutative ring.

(a) For any right S-module M, let $s: M \to M$ be multiplication by $s \in S$, and define

$$Ann(M) = \{ s \in S \mid \cdot s = 0 \},$$

$$Mon_M = \{ s \in S \mid \cdot s \text{ is a monomorphism} \}.$$

Briefly prove the following.

- (i) Ann(M) is an ideal of S and M is a right module over S/Ann(M).
- (ii) If N is a right S-module such that $Ann(M) \cap Mon_N \neq \emptyset$, then the group $Hom(M_S, N_S)$ is zero.
- (b) Let R be a commutative ring (you may assume without proof that R has invariant basis number).
- (i) Write down (with proof) a free generating set for $\operatorname{End}(R_R^m)$ as a left R-module.
 - (ii) Write down a left R-module isomorphism from $M_m(R)$ to $\operatorname{End}(R_R^m)$.
- (iii) Show that if $A \in M_m(R)$ then there is a polynomial $f(x) \in R[x]$ of degree at most m^2 that vanishes on A; that is, f(A) is the zero matrix.

Now suppose further that g(x) vanishes on $B \in M_n(R)$, where $f(x), g(x) \in R[x]$ are coprime.

(iv) Let M be the right R[x]-module R^m on which x acts as A, and let N be the right R[x]-module R^n on which x acts as B. Show that $Hom(M_{R[x]}, N_{R[x]}) = 0$.

Question 3. Let R be a (commutative) domain.

- (a)(i) Show that if I and J are nonzero ideals of R then $IJ \neq 0$.
- (ii) Show that R_R is indecomposable.
- (b) Let $a \in R$. Consider the diagram below in which each map of right R-modules is the inclusion map.

$$\begin{array}{ccc}
aR & \longrightarrow & R \\
\downarrow & & \\
R & & \end{array}$$

- (i) Describe the universal property for a pushout N of this diagram, and show that it exists.
- (ii) By using the map $(x, y) \longmapsto x + y$, or otherwise, define a split epimorphism of R-modules from N to R having kernel isomorphic to R/aR.
- (iii) Find necessary and sufficient conditions on a for N to be a projective R-module.

Question 4. Let R be a commutative ring, and let \mathfrak{p} be a prime ideal in R.

- (a) Briefly outline the argument that shows that the localization $R_{\mathfrak{p}}$ is a flat R-module.
 - (b) Let $\mathfrak a$ be an ideal of R. Show that the following are equivalent.
 - (i) \mathfrak{a} is not contained in \mathfrak{p} .
 - (ii) $(R/\mathfrak{a}) \otimes_R R_{\mathfrak{p}} = 0.$
- (iii) $\mathfrak{a}_{\mathfrak{p}} = R_{\mathfrak{p}}$.
- (c) Use (b) to show that every proper ideal of R is contained in a prime ideal. Briefly indicate a more common way of obtaining this conclusion.

PAGE 4 MA5203

Question 5. (a) Let $\alpha: L \to M$ and $\beta: M \to N$ be morphisms in an abelian category \mathcal{A} . By means of the Five Lemma, or otherwise, show that the following are equivalent.

(i)
$$0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$$

is a short exact sequence.

- (ii) α is a monomorphism and $(N, \beta) = \text{Coker}\alpha$.
- (iii) β is an epimorphism and $(L, \alpha) = \text{Ker}\beta$.

Give an example to show that the implication (ii) \Rightarrow (i) can fail in an additive category.

- (b) Let \mathcal{C} be a full subcategory of an abelian category \mathcal{A} .
- (i) Show that C is additive if and only if the zero object of A lies in C and C is closed under direct sum.
- (ii) Suppose that \mathcal{C} is additive and, for any morphism $\lambda: L \to M$ in \mathcal{C} , the objects $\operatorname{Ker} \lambda$ and $\operatorname{Coker} \lambda$ of \mathcal{A} are both in \mathcal{C} . Show that \mathcal{C} is abelian.
- (c) By considering torsion, or otherwise, give an example of a full subcategory of the category AB of abelian groups that is:
 - (i) additive but not abelian; and
 - (ii) abelian.