Graduate Qualifying Examination : Linear Algebra Sem 2, 2005/2006

- (1) Let A be a 4×4 matrix with complex entries. Suppose that $A^m=0$ for some $m\in\mathbb{N}.$ Prove that
 - (i) $A^4 = 0$,
 - (ii) there exists a 4×4 matrix B such that $B^2 = I + A$.
- (2) Let V be a vector space of finite dimensional over \mathbb{R} and let \mathcal{B}_1 and \mathcal{B}_2 be two basis of V. Prove that \mathcal{B}_1 and \mathcal{B}_2 have the same cardinality. Does our result hold for $P_{\infty}(\mathbb{R})$ (the infinite dimensional vector space of all polynomials over \mathbb{R})? Justify your answer.
- (3) Let W be a subspace of an inner product space V. A best approximation to $v \in V$ by vectors in W is a vector $w \in W$ such that

$$||v-w|| \le ||v-u||$$
 for every vector u in W .

Prove that $w \in W$ is a best approximation of $v \in V$ by vectors in W if and only if v-w is orthogonal to every vector in W. Let w_1 and w_2 be best approximation to $v \in V$ by vectors in W. Determine whether $w_1 = w_2$. Justify your answer.

- (4) Let $M_4(\mathbb{R})$ be the set of all 4×4 matrices with real entries. Find a function $d: M_4(\mathbb{R}) \to \mathbb{R}$ such that
 - (i) for each $A \in M_4(\mathbb{R})$, $d(E_{ij}A) = -d(A)$, $d(E_{ij}(c)A) = d(A)$, $d(E_i(c)A) = cd(A)$, where E_{ij} $(i \neq j)$ is the matrix obtained from I_4 by interchanging row i and j of I_4 , $E_{ij}(c)$ $(i \neq j)$ is the matrix obtained from I_4 by adding c times of row j to row i, and $E_i(c)$ arises from I_4 on multiplying row i of I_4 by c,
 - (ii) $d(I_4) = 1$, where I_4 is the 4×4 identity matrix.
 - Is $d: M_4(\mathbb{R}) \to \mathbb{R}$ unique? Justify your answer.
- (5) Let A be an $n \times n$ matrix. Determine whether A and A^t are similar to each other over \mathbb{C} , where A^t is the transpose of A. Justify your answer.

The End