Ph.D. Qualifying Examination

Analysis

Sem 2, 2005/2006

Do All Questions

- 1. (i) Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges.
 - (ii) Let $\{E_n\}$ be a sequence of closed and bounded sets in a complete metric space. If $E_n \supset E_{n+1}$ for all n and $\lim_{n \to \infty} \text{diam } E_n = 0$, prove that $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point. Can the condition "complete" be omitted? Justify your answer.
- 2. (i) Let d be a discrete metric defined on \mathbb{R} . What sets are open in (\mathbb{R}, d) ? What functions are uniformly continuous on (\mathbb{R}, d) ? Justify your answers.
 - (ii) A metric space is called separable if it contains a countable dense subset. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.
- 3. (i) Let B[0,1] be the space of all bounded functions defined on [0,1]. Give a norm $\|\cdot\|$ defined on B[0,1] such that $\|f_n f\| \to 0$ as $n \to \infty$ if and only if $\{f_n\}$ converges to f uniformly on [0,1].
 - (ii) Suppose $\{f_n\}$ converges to f uniformly on [0,1] and $\lim_{t\to x} f_n(t)$ exists for each n. Prove that
 - (i) $\lim_{n\to\infty} \lim_{t\to x} f_n(t)$ exists, and
 - (ii) $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$.
- 4. (a) Let f be an increasing function defined on (a,b). Prove that
 - (i) f(x+) and f(x-) exist at every point of x in (a.b),
 - (ii) the set of points in (a, b) at which f is discontinuous is at most countable.
 - (b) If f is continuous on [0,1] and if

$$\int_0^1 f(x)x^n dx = 0, \quad n = 0, 1, 2, ...,$$

prove that f(x) = 0 on [0, 1].

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 2 2005-2006

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 4 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.