Ph.D Qualifying Examination: Linear Algebra 2005/2006, Sem 1

- (i) Let A and B be two $n \times n$ matrices. Suppose that AB = BA. Prove that there exists a basis \mathcal{B} such that both $[A]_{\mathcal{B}}$ and $[B]_{\mathcal{B}}$ are upper triangular.
- (ii) Let A and B be two $n \times n$ matrices. A and B are similar to each other over F if there exists an invertible $n \times n$ matrix P with entries in F such that PA = BP.
 - (a) Find all 7×7 matrices (up to similarity over \mathbb{C}) with minimal polynomial $(x^2 + 2x + 1)(x 2)$. Justify your answer.
 - (b) Find all 2×2 matrices (up to similarity over \mathbb{Z}) with characteristic polynomial $(x^2 + 2x + 1)$. Justify your answer.
- (iii) Let A and B be two $n \times n$ matrices. Prove that det $AB = \det A \det B$.
- (iv) Let V be an n-dimensional vector space over a field F and let f: $V \times V \to F$ be a bilinear form. Suppose that f is nondegenerate (if f(x,v) = 0 for all $x \in V$, then v = 0) and f(u,u) = 0 for all $u \in V$. Prove that n = 2m is even and that there exists a basis $\{e_1, e_2, \cdots, e_{2m}\}$ such that
 - (a) $f(e_i, e_{m+i}) = 1$ for $1 \le i \le m$,
 - (b) $f(e_i, e_j) = 0$ if $|i j| \neq m$.