Ph.D. Qualifying Examination

Complex Analysis
Sem 1, 2005/2006

1. State and prove Liouville's Theorem and use it to prove the Fundamental Theorem of Algebra.
2. Find the number of roots of

$$
z^{7}-5 z^{3}+9=0
$$

that lie between the circles $|z|=1$ and $|z|=2$. Justify your answer carefully.
3. Use contour integration to evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{x^{6}+1}
$$

4. Find a conformal map that maps the region $D_{1}=\{z \in \mathbb{C}: 0<\operatorname{Im} z<1\}$ onto the open unit disk $D_{2}=\{z \in \mathbb{C}:|z-3|<1\}$.
