Algebra, 2005/2006, Sem 1

Answer all questions. Each question carries 25 marks.

- (1) Classify all groups of order 8 up to isomorphism.
- (2) Prove or disprove each of the following statements:
 - (a) A field is a Euclidean domain.
 - (b) If R is a Euclidean domain but not a field, and S is a subring of R with multiplicative identity, then S is the unique factorization domain.
- (3) For each of the following polynomials f(X), find the degree of K over \mathbb{Q} , where K is the splitting field of f(X).
 - (a) $f(X) = X^4 1$;
 - (b) $f(X) = X^3 1$;
 - (c) $f(X) = X^4 2$; (d) $f(X) = X^3 2$.
- (4) Let R be a ring with 1. A simple left R-module M is a left R-module such that |M| > 1 and if N is a submodule of M, then either N = M or $N = \{0\}$.
 - (a) Let I be a maximal left ideal of R. Show that R/I is a simple R-module.
 - (b) Let m be a nonzero element of a simple left R-module M. Prove that:
 - (i) $Rm := \{rm \mid r \in R\}$ equals M;
 - (ii) $Ann(m) := \{r \in R \mid rm = 0\}$ is a maximal left ideal
 - (iii) $R/\operatorname{Ann}(m) \cong M$ as left R-modules.