Ph.D. Qualifying Examination Complex Analysis

1. (a) Let a function $f(z)$ be analytic in a domain D. Show that if there exist real constants α, β and γ, not all zero, such that

$$
\alpha \operatorname{Re} f(z)+\beta \operatorname{Im} f(z)=\gamma
$$

throughout D, then $f(z)$ must be constant in D.
(b) Find the values, if any, of the positive integer n such that the function

$$
h(x, y)=x^{n}-y^{n},
$$

where $x, y \in \mathbb{R}$, is harmonic in \mathbb{C}.
2. (a) Let n be an integer. Evaluate the integral

$$
\int_{C} \frac{\cosh (n z)}{z} d z
$$

where C is the circle $|z|=1$ oriented in the counterclockwise direction. Hence or otherwise, find the value of

$$
\int_{0}^{\pi} \cosh (n \cos \theta) \cos (n \sin \theta) d \theta
$$

(b) Determine all the singular points, if any, of the function

$$
f(z)=\frac{\sin z+z-\pi}{z(z-\pi)^{4}}
$$

and for each singular point, identify its type and find the residue of f at it.
3. Use Cauchy's residue theorem to evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x
$$

Justify your steps.
4. Consider the function

$$
F(z)=z^{2} e^{-z}+6 z-5
$$

Let C be the positively oriented contour formed by the right half of the circle $|z|=2$ and the straight line segment from $z=2 i$ to $z=-2 i$.
(i) Determine the number of zeros, counting multiplicities, of $F(z)$ inside C.
(ii) Does $F(z)$ have any real zeros inside C ? Justify your answer.
5. Find a linear fractional transformation that maps the lower half plane $\operatorname{Im} z<0$ onto the disk $|w+1|<2$.

END OF PAPER

