Ph.D. Qualifying Examination

Algebra

Semester 2, 2004/2005

Ring Theory

- (a) Prove that every integral domain can be imbedded in a field.
- (b) Let D be an integral domain and let $F = \{x \in D : xd = 1 \text{ for some } d \in D\}$. Suppose that D is a finite dimensional vector space over F. Prove that D is a field.

Group Theory

- (a) Let G be a nonabelian finite group generated x and y, where o(x) = o(y) = 2. Prove that G is isomorphic to a dihedral group.
- (b) Let G be a group of order 56. Suppose that G has 2 or more subgroups of order 7. Prove that G has a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Field Theory

- (a) Let F be a finite field. Prove that $F \{0\}$ under multiplication is a cyclic group.
- (b) Prove that $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$ is irrational.

END OF PAPER