Ph.D. Qualifying Examination Complex Analysis

- 1. (a) Determine the isolated singular points of the function $f(z) = \frac{\pi e^z + iz}{(z^2 + \pi^2)^2}$. Classify each singular point as a removable singular point, an essential singular point or a pole of specific order. Evaluate also the residue of f(z) at each of the singular points.
 - (b) Let g(z) be an entire function such that

$$g(0) = 0,$$
 $g'(0) = 0,$ $g''(0) = 6,$ $g'''(0) = 8,$

Evaluate the residue of the function $\frac{1}{g(z)}$ at z = 0. Justify your answer.

- 2. Let **D** denote the standard unit open ball in the complex plane **C**, i.e., **D** = $\{z \in \mathbf{C} \mid |z| < 1\}$, and let $\overline{\mathbf{D}}$ denote its closure in **C**, i.e., $\overline{\mathbf{D}} = \{z \in \mathbf{C} \mid |z| \le 1\}$. Suppose a function f is analytic on $\overline{\mathbf{D}}$ except for some poles in **D**. Show that the number of poles of f in **D** must be finite.
- 3. Use the Cauchy residue theorem to evaluate the improper integral

$$\int_0^\infty \frac{x^2 \cos 5x}{x^4 + 81} \, dx$$

Justify your steps.

4. (a) Let a_0, a_1, \dots, a_n be fixed complex numbers. Consider the two polynomials

$$p(z) = \sum_{k=0}^{n} a_k z^k = a_n z^n + a_{n-1} z^{n-1} \dots + a_0, \text{ and}$$
$$q(z) = \sum_{k=0}^{n} \overline{a_{n-k}} z^k = \overline{a_0} z^n + \overline{a_1} z^{n-1} + \dots + \overline{a_n}$$

in the complex plane. Show that, if $|a_n| < |a_0|$, then p(z) and $\overline{a_0}p(z) - a_nq(z)$ have the same number of zeros in the unit ball |z| < 1. [Hint: First show that |p(z)| = |q(z)| whenever |z| = 1.]

(b) What is the number of zeros of the polynomial $z^4 + z^3 + z^2 + 2z + 2$ in the unit ball |z| < 1?

5. Let **D** denote the standard unit open ball in the complex plane **C**, i.e., $\mathbf{D} = \{z \in \mathbf{C} \mid |z| < 1\}$. Let $f : \mathbf{D} \to \mathbf{C}$ be a bounded analytic function such that $f(0) \neq 0$. Suppose $\{a_k\}_{k=1}^{\infty} \subset \mathbf{D}$ is a sequence of complex numbers in **D** such that $a_k \neq a_{k'}$ whenever $k \neq k'$, and $f(a_k) = 0$ for each k. Show that the series of real numbers

$$\sum_{k=1}^{\infty} \ln |a_k|$$

converges. (You may use freely without proof the following fact: For each |a| < 1, the linear fractional transformation f_a given by $f_a(z) = \frac{z-a}{1-\bar{a}z}$ is analytic on **D**, and $f_a(\mathbf{D}) = \mathbf{D}$.)

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2004-2005

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.