Ph.D. Qualifying Examination Analysis

1. (a) Discuss the convergence, both pointwise and uniform, of

$$S_n(x) = \frac{nx}{1 + n^2 x^2}, \quad n = 1, 2, \dots$$

on

- (i) [0,1]; and
- (ii) [c, 1], where c > 0.
- (b) Let $S_{m,n}: [a,b] \to \mathbb{R}, \ m=1,2,...,n=1,2,...$ Suppose that
- (i) for each n, $|S_{m,n}(x)| \leq g_n(x)$ for all m and all $x \in [a, b]$; (ii) $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly on [a, b]; and (iii) for each n, $S_{m,n}(x) \to S_n(x)$ on [a, b] as $m \to \infty$. Prove that $\sum_{n=1}^{\infty} S_n(x)$ converges uniformly on [a, b].
- 2. (a) Let (X, ρ) be a metric space. Prove that (X, ρ) is compact if and only if every class of closed sets with finite intersection property has nonempty intersection. (A class of subsets of X is said to have the finite intersection property if every finite subclass has nonempty intersection.)
 - (b) Let (\mathbb{R}^n, d_2) be the *n*-dimensional Euclidean space with the usual metric d_2 and $E = \prod_{i=1}^{n} [a_i, b_i]$ a compact subinterval in \mathbb{R}^n . Suppose δ is a positive function defined on E. Prove that there exists a finite collection $\{(I_i, x^{(i)})\}_{i=1}^m$ of interval-point pairs, where $x^{(i)} \in I_i \subseteq E$ for all i, such that for each i,

$$x^{(i)} \in I_i \subseteq B(x^{(i)}, \delta(x^{(i)})),$$

where $B(x^{(i)}, \delta(x^{(i)})) = \{y \in \mathbb{R}^n : d_2(x^{(i)}, y) < \delta(x^{(i)})\}.$ Hint: Proof by contradiction.

- 3. (a) Let (X, ρ) be a metric space with $x_0 \in X$. Define $f : X \to \mathbb{R}$ by $f(x) = \rho(x, x_0)$. Prove that f is uniformly continuous on X.
 - (b) Let (X, ρ) be a metric space and A a nonempty subset of X. Let f(x) = dist(x, A) = inf{ρ(x, y) : y ∈ A}.
 Prove that f : X → ℝ is continuous. Is f uniformly continuous on X? Justify your answer.
 - (c) Prove that in a separate metric space every uncountable set contains a convergent sequence of distinct points.
- 4. (a) A collection of continuous real-valued functions on a set $S \subseteq \mathbb{R}$ is said to be equicontinuous if for each $\varepsilon > 0$, there is a $\delta > 0$ so that $|f(x) - f(y)| \le \varepsilon$ when f is in the collection, x, y are in S and $|x - y| \le \delta$.
 - (i) Is the collection $\{\cos nx, n = 1, 2, ...\}$ equicontinuous on $(-\infty, \infty)$? Justify your answer.
 - (ii) Let $\{f_n\}$ be equicontinuous on [a, b] and $f_n \to f$ uniformly on $[a, b] \cap \mathbb{Q}$. Prove that $||f_n - f||_{\infty} \to 0$ as $n \to \infty$, where $||g||_{\infty} = \sup\{|g(x)| : x \in [a, b]\}$.
 - (b) Prove that every compact metric space is separable.

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2004-2005

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.