Ph.D. Qualifying Examination 2003/2004 Semester II Linear Algebra

- 1. (a) A is an $n \times n$ matrix such that $A^2 A 2I = 0$. Show that A + 2I is non-singular and find its inverse.
 - (b) A is an $n \times n$ matrix such that $A = I vv^T$ where v is a non-zero column vector in \mathbb{R}^n . Show that $A^2 = A$ if and only if $v^T v = 1$.
- 2. Let A be the $n \times n$ real matrix given by

$$A = \begin{pmatrix} 1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \vdots & & & \ddots & \vdots \\ a & a & \cdots & a & 1 \end{pmatrix}.$$

What are the possible ranks of A? Justify your answer.

- 3. Let A be an $m \times n$ matrix with rank A = r. Suppose rank AB = 1 and none of the columns of AB are zero. Show that rank $B \leq n r + 1$.
- 4. Let A be an $n \times n$ matrix with n distinct eigenvalues.
 - (a) Suppose B is an $n \times n$ matrix with the same set of eigenvalues as A. Show that A = QR and B = RQ for some invertible matrix Q and matrix R.
 - (b) Suppose every eigenvector of A is an eigenvector of C. Show that AC = CA.
- 5. Let A be an $n \times n$ real symmetric matrix. A is positive definite if $x^T A x > 0$ for all non-zero column vectors $x \in \mathbb{R}^n$.
 - (a) Show that A is positive definite if and only if $C^TAC = I$ for some invertible matrix C.
 - (b) Show that, if A is positive definite, then det(A + I) > 1.
- 6. Let (V, \langle , \rangle) be a finite dimensional inner product space and T a linear operator on V. Show that there exists a unique linear operator $S: V \to V$ such that $\langle T(x), y \rangle = \langle x, S(y) \rangle$ for all $x, y \in V$.

END OF PAPER