Ph.D. Qualifying Examination Complex Analysis

1. State the Cauchy Residue Theorem and use it to evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

2. Show that if $f(z)$ is an entire function and $\operatorname{Im} f(z)>\operatorname{Re} f(z)$ for all $z \in \mathbb{C}$, then f is a constant function.
3. State, without proof, Rouche's theorem. Use it to find the number of roots of the equation $e^{-z}+z^{2}-16=0$ in the right half plane $\operatorname{Re} z>0$. Justify your answer carefully.
4. (a) Use the power series representation of an analytic function to show that the zeroes of a non-constant analytic function are isolated.
(b) Let $f(z)$ be an entire function which is represented by the series

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, \quad(|z|<\infty)
$$

By differentiating the composite function $g(z)=f(f(z))$, find the first three non-zero terms for the Maclaurin series for $g(z)$ and deduce that the Maclaurin series for $\sin (\sin z)$ begins with

$$
\sin (\sin z)=z-\frac{z^{3}}{3}+\cdots, \quad(|z|<\infty)
$$

5. Find a conformal map f which maps the infinite strip

$$
S=\{z \in \mathbb{C}:-1<\operatorname{Re} z<1\}
$$

to the unit disk

$$
D=\{z \in \mathbb{C}:|z|<1\}
$$

-END OF PAPER-

