Ph.D. Qualifying Examination Analysis

Notation

$\left(\mathbb{R}, d_{1}\right)$ denotes the metric space of real numbers with metric $d_{1}(x, y)=|x-y|$.
$\left(\mathbb{R}, d_{p}\right)$ denotes the n-dimensional Euclidean space with metric $d_{p}(x, y)=\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}\right)^{\frac{1}{p}}$, where $p \geq 1$.
$\left(\ell_{p}, d_{p}\right)$ denotes the metric space of real sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}<\infty$ and $d_{p}(x, y)=\left(\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{p}\right)^{\frac{1}{p}}$, where $p \geq 1$.
$S_{r}(x)$ and $S_{r}[x]$ denote an open sphere and a closed sphere in a metric space resepctively.
\bar{A} denotes the closure of A in a metric space.

1. (a) (i) Let $(X,\|\cdot\|)$ be a normed space. Prove that $\overline{S_{r}(x)}=S_{r}[x]$.
(ii) Let (X, \hat{d}) be a discrete metric space. Does $\overline{S_{r}(x)}=S_{r}[x]$ hold? Justify your answer.
(b) For each $n=1,2, \ldots$, let $S_{\frac{1}{n}}\left(x_{n}\right)$ and $S_{\frac{1}{n}}\left[x_{n}\right]$ be an open sphere and a closed sphere respectively in a complete metric space (X, ρ). Suppose that for each n, $S_{\frac{1}{n+1}}\left(x_{n+1}\right) \subseteq S_{\frac{1}{n}}\left(x_{n}\right)$. Prove that $\bigcap_{n=1}^{\infty} S_{\frac{1}{n}}\left[x_{n}\right]$ is not empty.
2. (a) Let $f:\left([0,1], d_{1}\right) \rightarrow\left(\mathbb{R}, d_{1}\right)$. Suppose for each $x \in[0,1]$, there exists $S_{r_{x}}(x)=$ $\left\{y:|x-y|<r_{x}\right\}$ such that f is bounded on $S_{r_{x}}(x)$. Prove that f is bounded on $[0,1]$.
(b) (i) Let f and g be uniformly continuous on $A \subseteq \mathbb{R}$, under the standard distance d_{1}. Suppose that f and g are bounded on A. Prove that their product $f g$ is uniformly continuous on A.
(ii) Give an example to show that (i) does not hold if " f and g are bounded on $A "$ is omitted.
3. (a) (i) Let A and B be subsets of \mathbb{R}. Suppose that A is compact and B is closed in $\left(\mathbb{R}, d_{1}\right)$. Prove that $A+B$ is closed, where $A+B=\{x+y: x \in A, y \in B\}$.
(ii) Give an example to show that (i) does not hold if " A is compact" is replaced by " A is closed".
(b) Let (X, \hat{d}) be a discrete metric space and $A \subseteq X$. Prove that if A is finite, then A is compact. Is the converse true? Justify your answer.
4. (a) Let $\left(x^{(n)}\right)_{n=1}^{\infty}$ be a squence in \mathbb{R}^{m}. Prove that $d_{p}\left(x^{(n)}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ if and only if $d_{q}\left(x^{(n)}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, where $p, q \geq 1$.
(b) Let $x, y \in \mathbb{R}^{n}$ with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ define

$$
d_{\infty}(x, y)=\max \left\{\left|x_{i}-y_{i}\right|: i=1,2, \ldots, n\right\}
$$

Prove that

$$
d_{\infty}(x, y)=\lim _{p \rightarrow \infty} d_{p}(x, y)
$$

(c) Let $\left(x^{(n)}\right)_{n=1}^{\infty}$ be a sequence in $\left(\ell_{p}, d_{p}\right)$ with $x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots\right)$. Suppose that for each $k, \lim _{n \rightarrow \infty} x_{k}^{(n)}=x_{k}$ and there exists $y \in \ell_{p}$ such that $\left|x_{k}^{(n)}\right| \leq\left|y_{k}\right|$ for each k and n. Prove that $d_{p}\left(x^{(n)}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE
 DEPARTMENT OF MATHEMATICS

SEMESTER 2 2003-2004

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

1. Answer ALL questions.
2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.
