Ph.D. Qualifying Examination Analysis

- 1. In this question, the metric d used is the usual metric d(x,y) = |x-y|.
 - (i) Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. Prove that f is uniformly continuous on D if and only if whenever $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ in D with $d(x_n, y_n) \to 0$ as $n \to \infty$, we have $d(f(x_n), f(y_n)) \to 0$ as $n \to \infty$;
 - (ii) Let $f:[0,1)\to\mathbb{R}$ be continuous. Is f uniformly continuous on [0,1)? Justify your answer; and
 - (iii) Let $f: E \to \mathbb{R}$ be uniformly continuous. Is E closed and bounded? Justify your answer.
- (a) Give four different kinds of metric defined on Rⁿ. (You do not have to justify your answer.);
 - (b) Give a metric d defined on \mathbb{R}^n such that $\|\alpha x\| \neq |\alpha| \|x\|$, where $\|y\| = d(y,0)$; and
 - (c) Let $S \subseteq \mathbb{R}$. Then S is said to have the Bolzano-Weierstrass property if every sequence in S has a convergent subsequence with limit in S.
 - (i) Prove that, under the usual metric d(x,y) = |x-y|, S has the Bolzano-Weierstrass property if and only if S is bounded and closed. (You may use the fact that every bounded sequence has a convergent subsequence.)
 - (ii) Is (i) true for any metric defined on R? Justify your answer.
- 3. (i) Let $\alpha, \beta \geq 0$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $\frac{\alpha^p}{p} + \frac{\beta^q}{q} \geq \alpha\beta$.
 - (ii) Use (i) to prove the following Hölder inquality:

$$\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \ \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

4. Let B[0,1] be the space of all bounded functions defined on [0,1]. On B[0,1], define a metric d_{∞} as follows:

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}.$$

Let $f_k \in B[0,1]$, $M_k \in \mathbb{R}$, k = 1, 2, ..., and $|f_k(x)| \leq M_k$ for all $x \in [0,1]$ and all k. Suppose that $\sum_{k=1}^{\infty} M_k < \infty$. Prove that

- (i) $\left(\sum_{k=1}^{n} f_k(x)\right)_{n=1}^{\infty}$ converges in $(B[0,1], d_{\infty})$.
- (ii) if each f_n is continuous on [0,1], then $\sum_{k=1}^{\infty} f_k(x)$ is continuous on [0,1]; and
- (iii) if each f_n is Riemann integrable on [0,1], then $\sum_{k=1}^{\infty} f_k(x)$ is Riemann integrable on [0,1] and $\sum_{k=1}^{\infty} \int_0^1 f_k(x) dx = \int_0^1 \sum_{k=1}^{\infty} f_k(x) dx$.

END OF PAPER

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2003-2004

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer ALL questions from BOTH sections.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.