Ph.D. Qualifying Examination
 Sem 2, 2002/2003
 Complex Analysis

1. Does there exist a domain D in \mathbb{C} and a function f such that f is analytic on D and

$$
\operatorname{Re}[f(x+i y)]=e^{x+y}
$$

for all $x+i y \in D$? Justify your answer.
[10 marks]
2. Prove that the equation

$$
e^{-z}+z=2
$$

has exactly one root in the right half-plane, and this root is real.
[18 marks]
3. Let D be an open subset of \mathbb{C} and $z_{0} \in D$. Prove that if f is analytic on D and $f^{\prime}\left(z_{0}\right) \neq 0$, then

$$
\frac{2 \pi i}{f^{\prime}\left(z_{0}\right)}=\int_{\gamma} \frac{1}{f(z)-f\left(z_{0}\right)} d z
$$

where γ is a small circle centred at z_{0}.
[18 marks]
4. Find a function g with the properties:
(i) g is analytic on $D=\{z \in \mathbb{C}:|z|>2\}$.
(ii) $[g(z)]^{2}=4 z^{2}-9$ for all $z \in D$.
5. Given that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} .
$$

Let $\lambda>0$. By considering the integral

$$
\int_{\gamma} e^{-z^{2}} d z
$$

where γ is the boundary of the rectangle with vertices at $0, R, R+\lambda i$ and λi, prove that
(i) $\int_{0}^{\infty} e^{-x^{2}} \cos (2 \lambda x) d x=\frac{\sqrt{\pi}}{2} e^{-\lambda^{2}}$.
(ii) $\int_{0}^{\infty} e^{-x^{2}} \sin (2 \lambda x) d x=e^{-\lambda^{2}} \int_{0}^{\lambda} e^{y^{2}} d y$.
[18 marks]
6. Prove that if the function f is analytic in a deleted neighborhood D of $z=0$ and $f(1 / n)=0$ for all nonzero integers n, then either f is identically zero in D or f has an essential singularity at $z=0$.
[18 marks]

END OF PAPER

