Ph.D. Qualifying Examination Sem 2, 2002/2003 Analysis

[20 marks]

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. If f'(-1) < 2 and f'(1) > 2, show that there exists $x_0 \in (-1, 1)$ such that $f'(x_0) = 2$. (Hint: consider the function f(x) - 2x and recall the proof of Rolle's theorem)
- (b) Let $f : (-1,1) \to \mathbb{R}$ be a differentiable function on $(-1,0) \cup (0,1)$ such that $\lim_{x\to 0} f'(x) = l$. If f is continuous on (-1,1), show that f is indeed differentiable at 0 and f'(0) = l.
- (2) Let \mathbb{P}_n be the space of polynomials of degree $\leq n$ on \mathbb{R} for each $n \in \mathbb{N}$. If $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, define [20 marks]

$$\begin{split} ||p||_{M} &= \max\{|a_{0}|, |a_{1}|, \cdots, |a_{n}|\}\\ ||p||_{\infty} &= \max\{|p(x)| : x \in [0, 1]\}, \text{ and } ||p||_{1} = \int_{0}^{1} |p(x)| dx. \end{split}$$

(i) Show that $|| \cdot ||_1$ is a norm of the space \mathbb{P}_n .

(1)

(ii) Use the fact that $||\cdot||_M$ and $||\cdot||_{\infty}$ are also norms of \mathbb{P}_n , or otherwise, to show that there exists a positive constant c_n such that

$$c_n ||p||_{\infty} \le ||p||_1 \le (1/c_n) ||p||_M$$

for all $p \in \mathbb{P}_n$. (Hint: note that $\mathbb{P}_n \equiv \mathbb{R}^{n+1}$)

(iii) With the help of the Weiestrass approximation theorem, show that there is no positive constant c such that $c_n > c$ for all n. (Note that for each $\varepsilon > 0$, there is a nonnegative continuous function f_{ε} on [0, 1] such that $f_{\varepsilon}(0) = 1$ and $||f_{\varepsilon}||_1 < \varepsilon$.)

(3) Prove or disprove each of the following statements.

- (a) If $f : [1,5] \to [1,5]$ is a continuous function, then there exists $x_0 \in [1,5]$ such that $f(x_0) = x_0$.
- (b) Let $\{f_n\}$ be a sequence of uniformly continuous functions on an interval *I*. If $\{f_n\}$ converges uniformly to a function *f* on *I*, then *f* is also uniformly continuous on *I*.
- (c) Let $\{f_n\}$ be a sequence of functions that converges uniformly to a function f on (0,2). If each of the f_n is differentiable on (0,2), then f is also differentiable on (0,2).
- (d) If f is a continuous function on [-1,1], then there exists a constant M > 0 such that $|f(x_1) - f(x_2)| \le M|x_1 - x_2|$ for all $x_1, x_2 \in [-1, 1]$.
- (e) If f is a uniformly continuous function on (0, 5), then there exists a positive number ε such that the function $g(x) = 1/(f(x) + \varepsilon)$ is also uniformly continuous on (0, 5).
- (4) Let $g : [0,1] \times [0,1] \to [0,1]$ be a continuous function and let $\{f_n\}$ be a sequence of functions such that [20 marks]

$$f_n(x) = \begin{cases} 0, & 0 \le x \le 1/n, \\ \int_0^{x - \frac{1}{n}} g(t, f_n(t)) dt, & 1/n \le x \le 1. \end{cases}$$

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous function $f:[0,1] \to \mathbb{R}$ such that

$$f(x) = \int_0^x g(t, f(t))dt$$

for all $x \in [0, 1]$. (Hint: first show that $|f_n(x_1) - f_n(x_2)| \le |x_1 - x_2|$.)

- END OF PAPER -