Ph.D. Qualifying Examination
 Sem 2, 2002/2003

Analysis

(1)
[20 marks]
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. If $f^{\prime}(-1)<2$ and $f^{\prime}(1)>2$, show that there exists $x_{0} \in(-1,1)$ such that $f^{\prime}\left(x_{0}\right)=2$. (Hint: consider the function $f(x)-2 x$ and recall the proof of Rolle's theorem)
(b) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a differentiable function on $(-1,0) \cup(0,1)$ such that $\lim _{x \rightarrow 0} f^{\prime}(x)=l$. If f is continuous on $(-1,1)$, show that f is indeed differentiable at 0 and $f^{\prime}(0)=l$.
(2) Let \mathbb{P}_{n} be the space of polynomials of degree $\leq n$ on \mathbb{R} for each $n \in \mathbb{N}$. If $p(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, define

$$
\begin{gathered}
\|p\|_{M}=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \cdots,\left|a_{n}\right|\right\} \\
\|p\|_{\infty}=\max \{|p(x)|: x \in[0,1]\}, \text { and }\|p\|_{1}=\int_{0}^{1}|p(x)| d x .
\end{gathered}
$$

(i) Show that $\|\cdot\|_{1}$ is a norm of the space \mathbb{P}_{n}.
(ii) Use the fact that $\|\cdot\|_{M}$ and $\|\cdot\|_{\infty}$ are also norms of \mathbb{P}_{n}, or otherwise, to show that there exists a positive constant c_{n} such that

$$
c_{n}\|p\|_{\infty} \leq\|p\|_{1} \leq\left(1 / c_{n}\right)\|p\|_{M}
$$

for all $p \in \mathbb{P}_{n}$. (Hint: note that $\mathbb{P}_{n} \equiv \mathbb{R}^{n+1}$)
(iii) With the help of the Weiestrass approximation theorem, show that there is no positive constant c such that $c_{n}>c$ for all n. (Note that for each $\varepsilon>0$, there is a nonnegative continuous function f_{ε} on $[0,1]$ such that $f_{\varepsilon}(0)=1$ and $\left\|f_{\varepsilon}\right\|_{1}<\varepsilon$.)
(3) Prove or disprove each of the following statements.
(a) If $f:[1,5] \rightarrow[1,5]$ is a continuous function, then there exists $x_{0} \in[1,5]$ such that $f\left(x_{0}\right)=x_{0}$.
(b) Let $\left\{f_{n}\right\}$ be a sequence of uniformly continuous functions on an interval I. If $\left\{f_{n}\right\}$ converges uniformly to a function f on I, then f is also uniformly continuous on I.
(c) Let $\left\{f_{n}\right\}$ be a sequence of functions that converges uniformly to a function f on $(0,2)$. If each of the f_{n} is differentiable on $(0,2)$, then f is also differentiable on $(0,2)$.
(d) If f is a continuous function on $[-1,1]$, then there exists a constant $M>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right| \text { for all } x_{1}, x_{2} \in[-1,1] .
$$

(e) If f is a uniformly continuous function on $(0,5)$, then there exists a positive number ε such that the function $g(x)=1 /(f(x)+\varepsilon)$ is also uniformly continuous on $(0,5)$.
(4) Let $g:[0,1] \times[0,1] \rightarrow[0,1]$ be a continuous function and let $\left\{f_{n}\right\}$ be a sequence of functions such that
[20 marks]

$$
f_{n}(x)=\left\{\begin{array}{cl}
0, & 0 \leq x \leq 1 / n \\
\int_{0}^{x-\frac{1}{n}} g\left(t, f_{n}(t)\right) d t, & 1 / n \leq x \leq 1
\end{array}\right.
$$

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)=\int_{0}^{x} g(t, f(t)) d t
$$

for all $x \in[0,1]$. (Hint: first show that $\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|$.)

