Ph.D. Qualifying Examination
 Sem 1, 2002/2003
 Complex Analysis

1. Consider the function $f(z)=5 \bar{z}^{2}-2 \bar{z}-3 i|z|^{2}$ in the complex plane. Determine the points, if any, at which $f(z)$ is differentiable, and find $f^{\prime}(z)$ where it exists. Determine also the points, if any, at which $f(z)$ is analytic.
2. Let $h(x, y)$ be a harmonic function in \mathbf{R}^{2} such that $h(x, y) \neq 0$ for any $(x, y) \in$ \mathbf{R}^{2}. Consider the function $g(x, y)=\frac{1}{[h(x, y)]^{2}}$ in \mathbf{R}^{2}. Suppose that $g(x, y)$ is also harmonic in \mathbf{R}^{2}. Is it true that $g(x, y)$ must be a constant function? Justify your answer.
3. Use the residue theorem to eveluate the improper integral

$$
\int_{0}^{\infty} \frac{\cos 2 x}{\left(x^{2}+9\right)^{2}} d x
$$

Justify your steps.
4. Suppose that a function q is analytic and has a simple zero at a point z_{o} (that is, $q\left(z_{o}\right)=0$ and $\left.q^{\prime}\left(z_{o}\right) \neq 0\right)$. Consider the function

$$
f(z)=\frac{1}{\left(z-z_{o}\right)^{2} q(z)}
$$

Show that f has a pole of order 3 at z_{o}, and express the residue of f at z_{o} in terms of $q^{\prime}\left(z_{o}\right), q^{\prime \prime}\left(z_{o}\right)$ and $q^{\prime \prime \prime}\left(z_{o}\right)$. Justify your answer.
5. Let f be an entire function such that $|f(z)|=1$ for any complex number z satisfying $|z|=1$. Prove that there exist a non-negative integer n and a complex number c satisfying $|c|=1$ such that

$$
f(z)=c z^{n}
$$

for all z in the complex plane.

