Ph.D. Qualifying Examination
 Sem 1, 2002/2003

 Analysis

 Analysis}
1.(a) Let $f:[0, \infty) \rightarrow \mathbb{R}$. Suppose that f is continuous on $[0, \infty)$ and differentiable on $[100, \infty)$ with bounded derivatives there. Prove that f is uniformly continuous on $[0, \infty)$.
(b) Let $f:(0,1] \rightarrow \mathbb{R}$ be continuous. Is f uniformly continuous on $(0,1]$? Justify your answer.
2.(a) State, without proof, the Heine-Borel Theorem.
(b) Let δ be a positive function defined on $[a, b]$. Prove that there exist a finite number of interval-point pairs $\left(\left[u_{i}, v_{i}\right], x_{i}\right)$, with $x_{i} \in\left[u_{i}, v_{i}\right] \subset\left(x_{i}-\delta\left(x_{i}\right), x_{i}+\delta\left(x_{i}\right)\right)$,
$i=1,2, \ldots, n$, satisfying the following properties:
(i) $\left(u_{i}, v_{i}\right) \cap\left(u_{j}, v_{j}\right)=\phi$ for $i \neq j$;
(ii) $x_{i} \in\left[u_{i}, v_{i}\right]$ for each i; and
(iii) $\bigcup_{i=1}^{n}\left[u_{i}, v_{i}\right]=[a, b]$.
3.(a) Let $f:[a, b] \rightarrow \mathbb{R}$. Suppose that f is unbounded on $[a, b]$. Prove that there exists a convergent sequence $\left\{y_{n}\right\}$ in $[a, b]$ such that $\left|f\left(y_{n}\right)\right|>n$, for each n.
(b) Use (a) to prove that if f is continuous on $[a, b]$, then f is bounded on $[a, b]$.
4. Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be two sequences of functions defined on $[a, b]$. Suppose that
(i) $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$;
(ii) $g_{n}(x) \leq g_{n+1}(x)$ for all $x \in[a, b]$ and all n; and
(iii) there exists a real number L such that $\left|g_{n}(x)\right| \leq L$ for all $x \in[a, b]$ and all n.

Prove that $\sum_{n=1}^{\infty} f_{n}(x) g_{n}(x)$ converges uniformly on $[a, b]$.
Hint: Use Cauchy Criterion and Abel's partial summation

$$
\sum_{k=1}^{n} a_{k} b_{k}=\sum_{k=1}^{n-1}\left(a_{k}-a_{k+1}\right) B_{k}+a_{n} B_{n}
$$

where $B_{k}=\sum_{i=1}^{k} b_{i}$.
5. Let $C^{*}[0,1]$ be the space of all functions $x:[0,1] \rightarrow[0,1]$, which are continuous and $x(0)=0$. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. For each $x \in C^{*}[0,1]$, define $F(x):[0,1] \rightarrow \mathbb{R}$ as follows:

$$
F(x)(t)=\int_{0}^{t} f(s, x(s)) d s \text { for } t \in[0,1]
$$

Let $G=\left\{F(x): x \in C^{*}[0,1]\right\}$. Prove that
(i) G is sequentially compact i.e., every sequence in G has a subsequence which is uniformly convergent on $[0,1]$;
(ii) $F: C^{*}[0,1] \rightarrow C[0,1]$ is continuous under the uniform norm $\|\|$, where $C[0,1]$ is the space of all continuous functions on $[0,1]$ and $\|x\|=\sup \{x(t): t \in[0,1]\}$.

- END OF PAPER -

