Ph.D. Qualifying Examination
 Sem 2, 2001/2002
 Complex Analysis

1. Let

$$
f(x+i y)=\left(x^{3}-9 x^{2}+y^{3}\right)-i(3 x+24 y) .
$$

Determine the points, if any, at which f is differentiable, and find $f^{\prime}(z)$ where it exists. Determine also the points, if any, at which f is analytic.
2. Suppose that f is an entire function and $f(z)=f(2 z)$ for all complex numbers z. Prove that f is a constant function.
3. Let

$$
f(z)=\frac{1}{(z-1)(z-3)}
$$

(i) Find the Laurent series of f in the domain $\{z \in \mathbb{C}: 1<|z|<3\}$.
(ii) Evaluate the integral

$$
\int_{\gamma} \frac{1}{z^{n}(z-1)(z-3)}
$$

where n is a positive integer and γ is the positively oriented circle $|z|=2$.
4. Let

$$
f(z)=z\left(\frac{z-2}{e^{i \pi z}-1}\right)^{2}
$$

(i) Identify the singular points of f and classify each as a removable singularity, an essential singularity or a pole of specific order.
(ii) Evaluate

$$
\int_{\gamma} f(z) d z
$$

where γ is the positively oriented circle $|z|=1$.
5. Use the Cauchy residue theorem to show that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\frac{\pi(2 n)!}{2^{2 n}(n!)^{2}}
$$

for all nonnegative integers n.

