Ph.D. Qualifying Examination
 Sem 2, 2001/2002

 Analysis

 Analysis}

1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence of real numbers such that $a_{n} \neq 0$ for all $n \in \mathbb{N}$.
(a) Show that

$$
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq \limsup _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right| .
$$

(b) If $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|$ exists, show that $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$ exists and the two limits are equal.
(c) Give an example where equality does not hold in (a).
2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers.
(a) Define $b_{0}=0$ and $c_{n}=b_{n}-b_{n-1}$ for all $n \in \mathbb{N}$. Show that if $p, q \in \mathbb{N}, p \leq q$, then

$$
\sum_{n=p}^{q} a_{n} b_{n}=\left(\sum_{n=p}^{q} a_{n}\right) b_{p-1}+\sum_{j=p}^{q}\left(\sum_{n=j}^{q} a_{n}\right) c_{j} .
$$

(b) Suppose that $\left(b_{n}\right)_{n=1}^{\infty}$ is increasing and converges to $b \in \mathbb{R}$, and that $\sum_{n=1}^{\infty} a_{n}$ converges. Let M and m be real numbers such that $m \leq \sum_{n=p}^{q} a_{n} \leq M$ for all p, $q \in \mathbb{N}, p \leq q . \quad$ Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges and that $m b \leq \sum_{n=1}^{\infty} a_{n} b_{n} \leq M b$.
(c) If $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges for all $x \in[0,1]$, show that

$$
\lim _{x \rightarrow 1^{-}} \sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} a_{n}
$$

3. Let $f: X \rightarrow Y$ be a function mapping between metric spaces X and Y. Show that f is continuous on X if and only if $f(\bar{A}) \subseteq \overline{f(A)}$ for every subset A of X. (Here \bar{S} denotes the closure of the set S.)
4. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuous functions from a metric space X into a metric space Y. If $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to a function f on X and $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in X that converges to an element $x \in X$, show that $\left(f_{n}\left(x_{n}\right)\right)_{n=1}^{\infty}$ converges to $f(x)$.
5. Let $f:(0,1] \rightarrow \mathbb{R}$ be a continuous function on $(0,1]$. Show that f is uniformly continuous on (0,1] if and only if $\lim _{x \rightarrow 0^{+}} f(x)$ exists and has a real value.
