Ph.D. Qualifying Examination Sem 2, 2001/2002 Analysis

- 1. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence of real numbers such that $a_n \neq 0$ for all $n \in \mathbb{N}$.
 - (a) Show that

$$\limsup_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} |a_{n+1}/a_n|.$$

- (b) If $\lim_{n\to\infty} |a_{n+1}/a_n|$ exists, show that $\lim_{n\to\infty} |a_n|^{1/n}$ exists and the two limits are equal.
- (c) Give an example where equality does not hold in (a).
- 2. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers.
 - (a) Define $b_0 = 0$ and $c_n = b_n b_{n-1}$ for all $n \in \mathbb{N}$. Show that if $p, q \in \mathbb{N}, p \leq q$, then

$$\sum_{n=p}^{q} a_n b_n = \left(\sum_{n=p}^{q} a_n\right) b_{p-1} + \sum_{j=p}^{q} \left(\sum_{n=j}^{q} a_n\right) c_j$$

- (b) Suppose that (b_n)[∞]_{n=1} is increasing and converges to b ∈ ℝ, and that ∑[∞]_{n=1} a_n converges. Let M and m be real numbers such that m ≤ ∑^q_{n=p} a_n ≤ M for all p, q ∈ ℕ, p ≤ q. Show that ∑[∞]_{n=1} a_nb_n converges and that mb ≤ ∑[∞]_{n=1} a_nb_n ≤ Mb.
 (a) If ∑[∞]_{n=1} a_n aⁿ converges for all x ∈ [0, 1] show that
- (c) If $\sum_{n=1}^{\infty} a_n x^n$ converges for all $x \in [0, 1]$, show that

$$\lim_{x \to 1^-} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n$$

- 3. Let $f: X \to Y$ be a function mapping between metric spaces X and Y. Show that f is continuous on X if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X. (Here \overline{S} denotes the closure of the set S.)
- 4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions from a metric space X into a metric space Y. If $(f_n)_{n=1}^{\infty}$ converges uniformly to a function f on X and $(x_n)_{n=1}^{\infty}$ is a sequence in X that converges to an element $x \in X$, show that $(f_n(x_n))_{n=1}^{\infty}$ converges to f(x).
- 5. Let $f : (0,1] \to \mathbb{R}$ be a continuous function on (0,1]. Show that f is uniformly continuous on (0,1] if and only if $\lim_{x\to 0^+} f(x)$ exists and has a real value.

$$-$$
 END OF PAPER $-$