Ph.D. Qualifying Examination
 Sem 1, 2001/2002
 Complex Analysis

1. Find and classify all the isolated singular points of the following functions. Evaluate also the residues of the functions at the isolated singular points.
(i) $\frac{z-\cos (\pi z)}{\left(z^{2}-1\right)^{3}}$;
(ii) $\left(z^{2}+4 z\right) e^{\frac{1}{z-1}}$.
2. Determine the smallest positive integer n such that there is no complex number z satisfying

$$
z^{10}+z^{5}+20 z+2001=0 \quad \text { and } \quad|z| \geq n
$$

Justify your answer.
3. Use the residue theorem to eveluate the improper integral

$$
\int_{0}^{\infty} \frac{x \sin 3 x}{x^{4}+64} d x
$$

Justify your steps.
4. Let $f(z)$ be an analytic function on the complex plane \mathbf{C} such that $|f(z)|<1$ for all $|z|<1$.
(i) For a complex number a such that $|a|<1$, define the function

$$
g(z)=\frac{f(z)-a}{1-\bar{a} f(z)} .
$$

Show that $|g(z)|<1$ for all $|z|<1$.
(ii) Hence or otherwise, show that

$$
\frac{|f(0)|-|z|}{1-|f(0)||z|} \leq|f(z)| \leq \frac{|f(0)|+|z|}{1+|f(0)||z|} .
$$

5. Let f be an analytic function in the complex plane \mathbf{C}. Show that the real part $\operatorname{Re}(f)$ of f cannot have an isolated zero. (An isolated zero of a function u is a point $z_{o} \in \mathbf{C}$ such that $\{z \in V: u(z)=0\}=\left\{z_{o}\right\}$ for some open neighborhood V of z_{o}.)
