NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2000/2001

MA1101 Linear Algebra I

October/November 2000 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **SEVEN** (7) questions and comprises **FOUR** (4) printed pages.
- 2. Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Answer not more than **TWO** (2) questions from **Section B**. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2

MA1101

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [15 marks]

- (a) Given that $A = \begin{pmatrix} 2 & 3 \\ 2 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ -4 & 3 \end{pmatrix}$. Determine a matrix X satisfying $A^{-1}XA = B$.
- (b) Let A, B be 4×4 matrices. Suppose that $B=E_3\,E_2\,E_1\,A$, where

$$E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad E_3 = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (i) Write down a sequence of elementary row operations, which when applied to A, gives matrix B.
- (ii) Suppose that B=I, the 4×4 identity matrix. Find elementary matrices E,F,G such that A=EFG.

Question 2 [15 marks]

(a) Let V be a real vector space and let w_1, w_2, \dots, w_n be vectors in V. Suppose that a vector u in V is a linear combination of w_1, w_2, \dots, w_n .

Show that if w_1, w_2, \dots, w_n are linearly dependent, then u can be expressed as a linear combination of w_1, w_2, \dots, w_n in infinitely many ways.

(b) Let V be the vector space of all 2×2 real matrices. Let W be the subspace consisting of all the symmetric matrices.

Show that the set $S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ forms a basis of W.

Give reasons why $T = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ is not a basis of W.

Question 3 [15 marks]

- (a) Let $M_{2\times 2}$ be the vector space of 2×2 matrices over \mathbb{R} . Determine whether each of the following subsets of $M_{2\times 2}$ is a subspace of $M_{2\times 2}$.
 - (i) $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a b + c = 0 \right\}$.
 - (ii) $T = \{A \mid \text{the linear homogeneous system } AX = 0 \text{ has infinitely many solutions} \}.$
- (b) Let u=(1,2,3), v=(2,0,-1), w=(3,2,2) be vectors of \mathbb{R}^3 . Show that $\{u,v,w\}$ does not span \mathbb{R}^3 ; and give an example of a vector which lies in \mathbb{R}^3 but not in the subspace spanned by $\{u,v,w\}$.

Question 4 [15 marks]

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \longmapsto \begin{bmatrix} c \\ a+b+c \\ b+c+d \end{bmatrix}.$$

- (i) Determine the standard matrix of T.
- (ii) Determine bases for the range and the kernel of T respectively.

SECTION B

Answer not more than **two** questions in this section. Each question in this section carries 20 marks.

Question 5 [20 marks]

- (a) Let A and B be $n \times n$ matrices. Consider each of the following statements. If it is true, give a proof; if it is false, give a counter example.
 - (i) If $A^2 = B^2$, then A = B or A = -B.
 - (ii) If A is symmetric and invertible, then the inverse A^{-1} of A is also symmetric.
 - (iii) If the product AB is invertible, then both A and B are invertible.

Question 5 (continued)

- (b) Determine whether each of the following mappings is a linear transformation.
 - (i) $T: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$\left[\begin{array}{c} a \\ b \end{array}\right] \longmapsto a + b.$$

(ii) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$\left[\begin{array}{c} a \\ b \\ c \end{array}\right] \longmapsto \left[\begin{array}{c} a^2 \\ b \end{array}\right].$$

Question 6 [20 marks]

- (a) Let V be a real vector space and let u, v, w be linearly independent vectors of V. Consider the subspace W = span(u - v + w, u - w, 2u - v).
 - (i) Show that $\{u-v+w, u-w, 2u-v\}$ does not form a basis of W.
 - (ii) Find a basis of W. Justify your answer.

(b) Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 2 \\ -2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 6 \\ 1 & 1 & 4 & 8 \end{pmatrix}$$
.

- (i) Determine the rank of A.
- (ii) Find a basis for the row space of A; and extend this basis to form a basis of \mathbb{R}^4 .

Question 7 [20 marks]

(a) Consider the line

$$\{(1, 3, 0) + t(2, 1, 1) | t \in \mathbb{R}\}\$$

in the Euclidean space \mathbb{R}^3 .

Find equations of three distinct planes in \mathbb{R}^3 which will meet at the above line.

- (b) Let V, W be real vector spaces and let $T: V \to W$ be a linear transformation.
 - (i) Denote by 0_V and 0_W the zero vectors of V and W respectively. Show that $T(0_V) = 0_W$.
 - (ii) Suppose that x_1, x_2, \dots, x_n are linearly independent vectors of V and that the kernel ker (T) of T is the zero subspace of V. Show that the vectors $T(x_1), T(x_2), \dots, T(x_n)$ of W are linearly independent.

END OF PAPER