Ph.D. Qualifying Examination
 Sem 2, 2000/2001
 Complex Analysis

1. Suppose that both $f(z)$ and $\overline{f(z)}$ are analytic in a domain D. Prove that $f(z)$ is constant in D.
2. Let

$$
f(z)= \begin{cases}\frac{e^{z}-1}{z} & \text { if } z \neq 0 \\ 1 & \text { if } z=0\end{cases}
$$

(i) Prove that f is entire.
(ii) Find $f^{(99)}(0)$.
3. Let

$$
f(z)=\frac{z(z-2)^{2}}{\cos \pi z-1} .
$$

(i) Identify the singular points of f and classify each as a removable singularity, an essential singularity or a pole of specific order.
(ii) Evaluate

$$
\int_{\gamma} f(z) d z
$$

where γ is the positively oriented circle $|z|=1$.
4. Use the Cauchy residue theorem to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

5. Find a conformal map that maps the region $D_{1}=\{z \in \mathbb{C}:|z|>1\}$ onto the region $D_{2}=\{z \in \mathbb{C}: \operatorname{Re}(z)<0\}$.
