Ph.D. Qualifying Examination
 Sem 2, 2000/2001
 Analysis

1. Show that a function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous on $[0,1]$ if and only if $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ is a Cauchy sequence whenever $\left(x_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $[0,1]$.
2. Let f be a continuous real-valued function such that

$$
\int_{0}^{1} x^{n} f(x) d x=0 \text { for } n=0,1,2, \ldots
$$

Show that f is the zero function.
3. Let $C[0,1]$ denote the set of all real-valued continuous functions on $[0,1]$. Show that there is a unique $f \in C[0,1]$ such that

$$
f(x)=\int_{0}^{x / 2} f(t) d t
$$

for all $x \in[0,1]$.
4. Let (X, d) be a complete metric space. For any $x \in X$ and any $\epsilon>0$, let $B(x, \epsilon)$ denote the open ball of radius ϵ centered at x. Suppose that A is a subset of X so that for any $\epsilon>0$, there exists a compact subset A_{ϵ} of X satisfying

$$
A \subseteq \cup_{x \in A_{\epsilon}} B(x, \epsilon)
$$

Show that A is relatively compact, i.e., the closure of A is a compact set.
5. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real-valued differentiable functions on $[0,1]$. Assume that there is a constant $C<\infty$ so that
(i) $\left|f_{n}(0)\right| \leq C$ for all $n \in \mathbb{N}$;
(ii) $\left|f_{n}^{\prime}(x)\right| \leq C$ for all $x \in[0,1]$ and all $n \in \mathbb{N}$. Show that $\left(f_{n}\right)_{n=1}^{\infty}$ has a uniformly convergent subsequence.

