NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 2 EXAMINATION 1999/2000

MA1101 LINEAR ALGEBRA I

April/May 2000 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- This examination paper consists of TWO (2) sections: Section A and Section
 B. It contains a total of SEVEN (7) questions and comprises FIVE (5) printed pages.
- 2. Answer **ALL** questions in **Section A**. Each question in Section A carries 15 marks.
- 3. Answer not more than **TWO** questions from **Section B**. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA1101

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1 [15 Marks]

(a) Consider the following system of linear equations

$$\begin{cases} x + y + 2z = 9 \\ 2x + 4y - 3z = 1 \\ 3x + 6y - 5z = 0. \end{cases}$$

Find the general solution by Gaussian or Gauss-Jordan Elimination.

(b) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 2 & 10 & 9 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 0 & 2 & -3 \end{pmatrix}$. Find elementary matrices \mathbf{E}_1 and \mathbf{E}_2 such that $\mathbf{E}_1 \mathbf{A} = \mathbf{B}$ and $\mathbf{E}_2 \mathbf{B} = \mathbf{A}$.

(c) List all possible <u>reduced</u> row echelon forms of a 3×3 homogeneous linear system whose solution set represents a line in the three dimensional space.

Question 2 [15 Marks]

Let $S = \{(3, 2, 0, 2), (12, 5, 0, 2), (6, 2, 5, 2), (3, 2, 0, 5)\}$ be a subset of \mathbb{R}^4 .

- (i) Show that S is linearly independent.
- (ii) Is span(S) equal to \mathbb{R}^4 ? Justify your answer.
- (iii) If we are to form a basis for the subspace $W = \{(x, y, 0, z) \mid x, y, z \in \mathbb{R}\}$ using vectors from S, which of the vectors shall we throw away? Explain why the remaining vectors in S form a basis for W.
- (iv) Write down a subspace of W whose dimension is 2.

PAGE 3 MA1101

Question 3 [15 Marks]

(a) Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 2 & -4 & 2 & 4 & 6 \\ 3 & -6 & 1 & 4 & 1 \\ 1 & -2 & -2 & -1 & -3 \end{pmatrix}$$
.

- (i) Find a basis for each of the row space, column space and nullspace of the matrix
 A. Show your workings clearly.
- (ii) Verify the Dimension Theorem for the matrix A.
- (b) Given that B is a 5×3 matrix whose rank is 3, find rank(B^T), nullity(B) and nullity(B^T).

Question 4 [15 Marks]

(a) Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y-z \\ x+z \end{pmatrix}$.

- (i) Show that T is a linear transformation.
- (ii) Find the standard matrix of T.
- (b) Let $F: \mathbb{R}^3 \to M_{2\times 2}$ be a linear transformation such that $F(1,1,0) = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $F(1,0,1) = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \text{ and } F(0,1,1) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$ Find F(1,1,1).
- (c) For each of the following cases, find the transformation matrix of
 - (i) the scaling with factor 1/2 followed by reflection about the line y = x in \mathbb{R}^2 ;
 - (ii) the projection onto the xz-plane in \mathbb{R}^3 .

··· **-** 4**-**

PAGE 4 MA1101

SECTION B

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

Question 5 [20 Marks]

- (a) Let $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a+3 & 0 & a-3 \\ 0 & 0 & a^2-9 & a-3 \end{pmatrix}$ be the augmented matrix of a linear system where a is some real number. Find all the possible values of a such that the system has (i) no solution; (ii) a unique solution; (iii) infinitely many solutions. Justify your answer.
- (b) A square matrix B is said to be nilpotent if $B^k = 0$ for some positive integer k.
 - (i) Show that $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ is nilpotent.
 - (ii) Show that, if a square matrix C is nilpotent, then C is not invertible.
- (c) Let $\mathbf{A} = (a_{ij})_{n \times n}$ be an $n \times n$ matrix with real entries.
 - (i) Write down the (i, j)-entry of AA^T .
 - (ii) If $AA^T = 0$, show that A = 0.

PAGE 5 MA1101

Question 6 [20 Marks]

- (a) Show that
 - (i) $W = \{(a, b, c, d) \mid a = c \text{ and } b = d\}$ is a subspace of \mathbb{R}^4 .
 - (ii) $S = \{ A \in M_{2 \times 2} \mid A \text{ is not invertible} \}$ is not a subspace of $M_{2 \times 2}$.
- (b) True or false: Let S_1 and S_2 be two subsets of a vector space. Then

$$\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2).$$

Justify your answer.

- (c) Let $S = \{w_1, w_2, \dots, w_n\}$ be a basis for a vector space V
 - (i) Given a vector v in V, describe what do we mean by $(v)_S$, the coordinate vector of v with respect to S.
 - (ii) Show that $\{v_1, v_2, v_3\}$ is linearly independent if and only if $\{(v_1)_S, (v_2)_S, (v_3)_S\}$ is linearly independent.

Question 7 [20 Marks]

- (a) Let $T: M_{2\times 2} \to M_{2\times 2}$ be a linear transformation defined by $T(\mathbf{A}) = \mathbf{A} \mathbf{A}^T$.
 - (i) Describe the range R(T) and the kernel $\ker(T)$ of T in <u>set notation</u> form.
 - (ii) Find the rank and nullity of T. Justify your answer.
- (b) Let A be the standard matrix of a linear transformation T_A on \mathbb{R}^n . Prove that A is invertible if and only if $R(T_A) = \mathbb{R}^n$.
- (c) Let A be an $m \times n$ matrix and b an $m \times 1$ column vector. Show that, if the linear system Ax = b has a unique solution, then the nullity of A is zero. Is the converse true?

[END OF PAPER]