Matriculation Number:

MA1505 Practice Examination

VERY IMPORTANT: This practice examination is just a sample for the students' reference only. Students should NOT expect to find all the questions in the actual examination to be of exactly the same type as the questions in the practice examination. The level of difficulty of the actual examination may also be DIFFERENT from the level of difficulty of the practice examination.

INSTRUCTIONS TO CANDIDATES

- 1. Write down your matriculation number neatly in the space provided above. This booklet (and only this booklet) will be collected at the end of the examination. Do not insert any loose pages in the booklet.
- 2. This examination paper consists of **EIGHT (8)** questions and comprises **THIRTY THREE (33)** printed pages.
- 3. Answer **ALL** questions. For each question, write your answer in the box and your working in the space provided inside the booklet following that question.
- 4. The marks for each question are indicated at the beginning of the question.
- 5. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

For official use only. Do not write below this line.

Question	1	2	3	4	5	6	7	8
(a)								
(b)								

Question 1 (a) [5 marks]

Let f(x) be a function defined by

$$f(x) = x^{1505}$$
 if $-\pi < x < \pi$,

and $f(x+2\pi) = f(x)$.

Let

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

be the Fourier series for f(x).

Find the **exact value** of a_{2012} .

Answer 1(a)	

 $(More\ working\ space\ for\ Question\ 1(a))$

Question 1 (b) [5 marks]

Let f(x) be a function defined by

$$f(x) = |\sin x| \quad \text{if } -\pi < x < \pi \ ,$$

and $f(x+2\pi) = f(x)$.

Let

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

be the Fourier series for f(x).

Find the **exact value** of a_4 .

Answer 1(b)	

 $(More\ working\ space\ for\ Question\ 1(b))$

Question 2 (a) [5 marks]

Let f(x) be a function defined on the open interval (0,1) by

$$f(x) = x$$
 .

Find the first two non-zero terms of the cosine Fourier half range expansion for f(x).

Answer	
2(a)	

 $(More\ working\ space\ for\ Question\ 2(a))$

Question 2 (b) [5 marks]

Let $w=f\left(x,y,z\right)$ be a differentiable function of three variables and

$$x = u + v$$
, $y = u - v$, $z = u^2 + v^2$.

Use the Chain Rule to find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ in terms of $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$ and $\frac{\partial w}{\partial z}$.

Answer 2(b)	

 $(More\ working\ space\ for\ Question\ 2(b))$

Question 3 (a) [5 marks]

The temperature at a point (x, y, z) in space is given by

$$T(x, y, z) = 25 + \left(1 - \frac{z}{100}\right) e^{-(x^2 + y^2)}.$$

Find the unit vector of the direction in which the temperature increases most rapidly at the point (2, 0, 99).

Answer 3(a)		

 $(More\ working\ space\ for\ Question\ 3(a))$

Question 3 (b) [5 marks]

A rocket is launched with a constant thrust corresponding to an acceleration of u feet per second squared. Ignoring air resistance, the rocket's height after t seconds is given by

$$h(t, u) = \frac{1}{2}(u - 32)t^2$$
 feet.

Fuel usage for t seconds is proportional to u^2t and the limited fuel capacity of the rocket satisfies the equation $u^2t = 10000$. Find the value of u that maximizes the height that the rocket reaches when the fuel runs out.

$\begin{array}{c} \textbf{Answer} \\ \textbf{3(b)} \end{array}$	

 $(More\ working\ space\ for\ Question\ 3(b))$

Question 4 (a) [5 marks]

Find the value of the double integral

$$\int \int_{D} \left(2xy^2 + 2y\cos x\right) dxdy,$$

where D is the finite domain bounded by the curve $y = \sqrt{x}$ and the two lines: x = 0, y = 3. Give your answer correct to the nearest integer.

Answer		
4 (a)		

 $(More\ working\ space\ for\ Question\ 4(a))$

Question 4 (b) [5 marks]

Find the **exact value** of the iterated integral

$$\int_0^1 \int_y^1 3x e^{x^3} dx dy.$$

Answer 4(b)	

 $(More\ working\ space\ for\ Question\ 4(b))$

Question 5 (a) [5 marks]

Find the **exact value** of the volume of the tetrahedron bounded by the plane 2x + y + z = 2 and the three coordinate planes.

Answer 5(a)	

 $(More\ working\ space\ for\ Question\ 5(a))$

Question 5 (b) [5 marks]

Find the **exact value** of the surface area of that portion of the paraboloid $z = 1 + x^2 + y^2$ that lies below the plane z = 5.

$\begin{array}{c} \textbf{Answer} \\ \textbf{5(b)} \end{array}$	

 $(More\ working\ space\ for\ Question\ 5(b))$

Question 6 (a) [5 marks]

Find the **exact value** of the line integral

$$\int_C 2y ds,$$

where C is the space curve given by

$$x = 2\cos t$$
, $y = t$, $z = 2\sin t$,

with $0 \le t \le 6\pi$.

Answer 6(a)	

 $(More\ working\ space\ for\ Question\ 6(a))$

Question 6 (b) [5 marks]

Find the **exact value** of the line integral

$$\int_C 4x dy + 2y dz,$$

where C is the space curve consists of the line segment from (0, 1, 0) to (0, 1, 1), followed by the line segment from (0, 1, 1) to (2, 1, 1) and followed by the line segment from (2, 1, 1) to (2, 4, 1).

$\begin{array}{c} \textbf{Answer} \\ \textbf{6(b)} \end{array}$		

 $(More\ working\ space\ for\ Question\ 6(b))$

Question 7 (a) [5 marks]

Find the **exact value** of the line integral

$$\int_{C_1+C_2} (xe^{x^2} + 2y)dx + (3x + e^{y\sqrt{1+y^2}})dy,$$

where C_1 is the straight line segment that joins (2,0) to (0,5) and C_2 is the straight line segment that joins (0,5) to (4,0).

 $(More\ working\ space\ for\ Question\ 7(a))$

Question 7 (b) [5 marks]

Find the **exact value** of the surface integral

$$\iint_{S} (x\mathbf{i} + y\mathbf{j}) \cdot d\mathbf{S},$$

where S is the portion of the paraboloid $z = x^2 + y^2$ lying below the plane z = 4 and oriented with upward pointing normal vectors.

Answer 7(b)		

 $(More\ working\ space\ for\ Question\ 7(b))$

Question 8 (a) [5 marks]

Use Stokes' Theorem to find the **exact value** of the line integral

$$\oint_C \left(-y \ dx + x^2 \ dy + z^3 \ dz\right),$$

where C is the curve of intersection of the plane x+z=3 and the cylinder $x^2+y^2=4$, oriented counterclockwise as seen from above.

Answer 8(a)	

 $(More\ working\ space\ for\ Question\ \mathcal{S}(a))$

Question 8 (b) [5 marks]

Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where

$$\mathbf{F}(x,y,z) = -y^2 z \mathbf{i} + y^2 \mathbf{j} + x^3 y^3 \mathbf{k}$$

and S is the surface of the rectangular region bounded by the three coordinate planes and the planes x = -1, y = 2, z = -3. The orientation of S is given by the outer normal vector.

Answer		
8(b)		

 $(More\ working\ space\ for\ Question\ 8(b))$

END OF PAPER