1.一维动力系统中的双曲性

定理: 假设f:[0,1]\rightarrow [0,1] C^{k}, k是正整数,则存在C^{k} 函数 f_{n}:[0,1]\rightarrow [0,1] 使得 || f_{n}- f ||_{C^{k}}=\max_{x\in[0,1]} \max_{0\leq m\leq k} |D^{m}f_{n}(x)-D^{m}f(x)| \rightarrow 0 as k\rightarrow \infty, 这里的每个f_{n}都满足Axiom A。

 

假设X是紧致度量空间,f:X\rightarrow X是连续函数。如果n是使得f^{n}(x)=x的最小正整数,则称x是以n为周期的周期点。

定义:

\omega(x)=\{ y\in X: \exists n_{k} \rightarrow \infty, f^{n_{k}}(x)\rightarrow y\}.

正向不变集:f(A)\subseteq A,

反向不变集:f^{-1}(A)\subseteq A,

完全不变集:f^{-1}(A)=A i.e. f(A)\subseteq A and f^{-1}(A)\subseteq A.

假设X=[0,1], f(x)\in C^{1}[0,1], \{ x, f(x), ... , f^{n-1}(x)\} 是以n为周期的周期轨道, 定义乘子(multiplier) \lambda=Df^{n}(x)=Df(x)\cdot Df(f(x)) ... Df(f^{n-1}(x))

|\lambda| \neq 1称为orb(x)=\{ f^{k}(x): k=0,1,2... \}是双曲周期轨。

|\lambda|=1称为中性周期轨。

|\lambda|<1称为双曲吸引轨。

|\lambda|>1称为双曲斥性轨。

双曲集合(hyperbolic set):假设f:[0,1]\rightarrow [0,1]C^{1}映射,A是紧集并且f(A)\subseteq A。如果存在C>0, \lambda>1使得对任意的x\in A, n\geq 1, 有|Df^{n}(x)| \geq C\lambda^{n},则称A是双曲集。

Axiom A: 假设 f:[0,1]\rightarrow [0,1]C^{1} 映射,称 f 满足 Axiom A是指:

(1)f 有有限多个双曲吸引轨 \theta_{1},...,\theta_{m},

(2)B(\theta_{i}) 是双曲吸引轨 \theta_{i} 的吸引区域, \Omega=[0,1]\setminus \cup_{i=1}^{m}B(\theta_{i}) 是双曲集。

例子1:f(x)=-x^{2},1是双曲斥性不动点,0是双曲吸引不动点。B(\{0\})=(-1,1), \Omega=[-1,1]\setminus B(\{0\})=\{-1,1\}. f^{n}(x)=x^{2^{n}} , Df^{n}(x)=2^{n}x^{2^{n}-1}. 取C=1, \lambda=2.

例子2:f(x)=2x(1-x), f(x)=ax(1-x).

 

性质1: 双曲斥性周期轨一定是双曲集。

性质2: 双曲集中没有临界点。

性质3: 双曲集合中任何一个周期轨都是双曲斥性的。

 

命题:假设f:[0,1]\rightarrow [0,1]属于C^{1+\alpha}并且\alpha \in(0,1). i.e. Df(x)\alpha-Holder连续的,|Df(x)-Df(y)|\leq C|x-y|^{\alpha}.如果A是双曲集,则A的Lebesgue测度是零。

证明:

 

 

定理(Mane,1985)(CMP)
假设 f:[0,1]\rightarrow [0,1] 是一个 C^{2} 的映射,

(1) f 的所有周期轨都是双曲的。

(2) Crit(f) 指的是 f 的临界点。\forall c\in Crit(f), 则存在双曲吸引周期轨 \theta_{c} 使得 d(f^{n}(c),\theta_{c})\rightarrow 0, n\rightarrow \infty.

\Longleftrightarrow f 满足 Axiom A。

另外一种形式:

假设f:[0,1]\rightarrow [0,1]是一个C^{2}的映射,

U\subseteq Crit(f)\cup \text{ hyperbolic attracting orbits }\cup \text{ and neutral orbits } ,

\Lambda_{U} = \{ x\in[0,1]: f^{n}(x)\notin U, \forall n\geq 0 \},

\Rightarrow \Lambda_{U} 是双曲集。

 

Advertisement

2 thoughts on “1.一维动力系统中的双曲性”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s